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Abstract. In this thesis, we study the generating function for the stable pair invariants
epPkpX, rCsqq on a polarised K3 surface pX,Hq, where the curve class is chosen so that C ¨H is
minimal among positive intersections with the polarisation, following [KY00]. Additionally, we
explore the enumeration of partial normalisations of Gorenstein curves and use the obtained
results to express the generating function of the stable pair invariants in its BPS form. This
allows us to analyse the contributions of individual curves in the linear system |C| to the
corresponding BPS numbers. Furthermore, we recover as a limit the famous Yau–Zaslow
formula proved by Beauville, and explore the relationship between the BPS invariants for X

and the Gromov–Witten theory of the local K3 surface X ˆ C under the assumption of the
MNOP conjecture.
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2 A. OVALLE

Introduction

Curve counting has a long history in algebraic geometry. Already in the 19th century, classical
geometers were captivated by the problem of enumerating curves satisfying specified geometric
conditions. A celebrated example is the fact that every smooth cubic surface contains exactly
27 lines, a result that has come to symbolise the beauty of the subject.

In the last few decades, the study of curve counting has undergone a profound transformation.
Modern approaches have given rise to powerful mathematical frameworks, most prominently
Gromov–Witten, Donaldson–Thomas, and Pandharipande–Thomas (or stable pair) invariants,
each offering a distinct perspective on the enumerative geometry of curves. These theories are
not isolated: deep conjectures, many of which have now been proven, reveal surprising equiv-
alences and correspondences between them, see [PT14] for a summary on the topic. Today,
enumerative algebraic geometry is less concerned with computing the raw number of curves
satisfying given conditions, and more with uncovering the intricate web of relations between
different enumerative invariants.

Let pX,Hq be a polarised K3 surface. A pair pF , sq, where F corresponds to a pure sheaf
of dimension 1 on X and s is a section OX

s // F with 0-dimensional cokernel, is called sta-
ble pair. We denote by PkpX, rCsq the moduli space of stable pairs pF , sq with curve class
c1pFq “ rCs and Euler characteristic χpFq “ k. By choosing C such that C ¨ H is minimal
among positive intersections with the polarisation, PkpX, rCsq coincides with the moduli space
of coherent systems Syst1p0, rCs, kq constructed by Le Potier, [Le 93]. Hence, PkpX, rCsq is a
projective scheme.

In this thesis, we study the generating function for the stable pair invariants epPkpX, rCsqq

on a polarised K3 surface pX,Hq introduced in [PT07], where the curve class is chosen so that
C ¨ H is minimal among positive intersections with the polarisation, following [KY00]. Ad-
ditionally, we explore the enumeration of partial normalisations of Gorenstein curves and use
the obtained results to express the generating function of the stable pair invariants in its BPS
form. This allows us to analyse the contributions of individual curves in the linear system |C|

to the corresponding BPS numbers. Furthermore, we recover as a limit the famous Yau–Zaslow
formula proved by Beauville, and explore the relationship between the BPS invariants for X
and the Gromov–Witten theory of the local K3 surface X ˆ C under the assumption of the
MNOP conjecture.

In the first section, we study Beauville’s proof of the Yau–Zaslow formula
ÿ

Gě0

epGqqG “
ź

ně1

p1 ´ qnq´24,

where epGq denotes the number (up to multiplicity) of rational curves in a linear system of in-
tegral curves of arithmetic genus G and of dimension G on a K3 surface, [Bea97]. Additionally,
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we explore the relation between curve singularities and the multiplicity of the rational curves.

In the second section, we prove that given an integral Gorenstein curve C of arithmetic genus
G and geometric genus G̃, we have the following relation

ÿ

i

epCrisqqi`1´G “
ÿ

G̃ďgďG

ngpCqFgpqq,

where epCrisq denotes the topological Euler characteristic of the Hilbert scheme of points Cris,
and Fgpqq is defined as follows. For a smooth curve Σ of genus g, we set

Fgpqq :“
ÿ

iě0

epΣpiqqqi`1´g,

where epΣpiqq denotes the topological Euler characteristic of the i-th symmetric product of Σ.
Additionally, we show that ngpCq are integers and, if C is a nodal curve, ngpCq counts precisely
the partial normalisations of C of arithmetic genus g.

In the third section, under the assumption that rCs is a curve class on a polarised K3 sur-
face pX,Hq such that C ¨ H is minimal among positive intersections with the polarisation and
C2 “ 2G´2, we prove the Yau–Zaslow’s type generating function for the total moduli of stable
pairs

ÿ

Gě0

ÿ

dě0

epPd`1´GpX, rCGsqqqG´1yd`1´G “
py´1{2 ´ y1{2q´2

q
ś

ně1p1 ´ qnq20p1 ´ qnyq2p1 ´ qny´1q2
.

The proof of the above formula is based on [KY00], however we incorporate modified versions
of some proofs of Yoshioka, see Lemmas 3.3 and 3.4. Furthermore, we use our calculations from
Section 2 to prove the BPS form

ÿ

Gě0

ÿ

kě1´G

epPkpX, rCGsqqykqG “
ÿ

Gě0

ÿ

gě0

Ng,Gy
1´gp1 ´ yq2g´2qG,

where Ng,G are integers. This relation allow us to recover the usual Yau–Zaslow formula in the
limit y // 1, giving us an interpretation of the BPS invariants N0,G. Additionally, we explore
the contributions of curves in the linear system |CG| to the BPS invariants Ng,G and relate
them to the integers ngpCq introduced in Section 2. This allows us to conclude Ng,G “ 0 for
g ą G.

Finally, in the fourth section we explore, under the assumption of the MNOP conjecture, the
relation between the BPS invariants Ng,G from Section 3 and the Gromov-Witten invariants of
the local K3 surface X ˆ C.

Acknowledgements: I wish to thank Prof. Dr. Richard Thomas for his generous guid-
ance, his patience and for proposing the key problems and directions that ultimately shaped
this work. I am also grateful to Prof. Dr. Daniel Huybrechts for his valuable questions and
recommendations during the master’s thesis seminar.
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1. The Yau–Zaslow formula

Let X be a K3 surface with a linear system |CG| of integral curves of arithmetic genus G and
of dimension G. Yau and Zaslow conjectured the following generating function, [YZ96]:

(1.1)
ÿ

Gě0

epGqqG “
ź

ně1

p1 ´ qnq´24,

where epGq denotes the number of rational curves in the linear system |CG|. In this section, we
study Beauville’s proof of this generating function, [Bea97].

Firstly, we relate the coefficients epGq with the topological Euler characteristic of the Hilbert
scheme of G-points epXrGsq via the Göttsche’s formula.

Theorem 1.1 ([Göt90]). Let X be a smooth projective surface over C or Fp. Then, we have

ÿ

Gě0

epXrGsqqG “
ź

ně1

p1 ´ qnq´epXq.

By the Göttsche’s formula, for a K3 surface we have epGq “ epXrGsq. We aim to show that
epXrGsq counts (up to multiplicity) rational curves in any G-dimensional linear system |CG|

of integral curves on X of arithmetic genus G. In order to do this, we relate XrGs to the
compactified Jacobian of the family of curves CG // |CG| associated to the linear system |CG|,
which is defined as follows.

Definition 1.2. LetX //S be a flat, finitely presented, locally projective morphism of schemes,
whose geometric fibres are integral curves. Then, we define the moduli functor

PicX{S : pSch {Sqop // Sets,

T � // tF P ModOXT
: F T -flat, Ft torsion free of rank 1 for t P T u{ „,

where F „ G if there exist a line bundle L P PicpT q and an isomorphism F b q˚L » G for
q : X ˆ T // T the canonical projection. Furthermore, after fixing a very ample line bundle
OXp1q, we set PicnX{S to be the open sub-functor of relative torsion free sheaves of rank 1 with
Hilbert polynomial n.
The étale sheafifications of the above moduli functors, PicX{S ,ét and PicnX{S ,ét

, are representable

by S-schemes, see Theorem 8.1. in [AK80]. We call Pic0X{S ,ét
the compactified Jacobian of the

family X //S, and we drop the subindex "ét" in this document.
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Theorem 1.3. Let CG // |CG| be a G-dimensional linear system of integral curves on a K3
surface X of arithmetic genus G. Then, its associated compactified Jacobian Pic0CG is birationally
equivalent in codimension 1 to the Hilbert scheme of points XrGs.

Proof. Let U Ă PicGCG be the open subscheme consisting of pairs pCt,Lq, where L is a line
bundle on Ct with h0pCt,Lq “ 1. This condition ensures that we can assign to each pair pCt,Lq

a unique effective Cartier divisor of degree G, say DpCt,Lq. On the other hand, let V Ă XrGs

be the subscheme of divisors contained in exactly one fibre of CG // |C|. We claim that the
morphism

U Ă PicGCG
// V Ă XrGs, pCt,Lq

� //DpCt,Lq

is well-defined and is an isomorphism.
To verify that DpCt,Lq is not contained in the intersection of two elements of the linear system
|C|, it is enough to show that L_ b OCtpCtq does not correspond to an effective divisor. Given
pCt,Lq P U , we have ωCt “ OCtpCtq via the adjunction formula. By Serre duality and Riemann-
Roch, we have h0pCt,L_ b OCtpCtqq “ h1pCt,Lq “ 0. Hence, L_ b OCtpCtq is not effective.
Hence, the above morphism is well-defined and it is clearly an isomorphism.
We have that codimpPicGCG ´ Uq ě 2 because generic effective divisors on a curve C P |CG| are
not contained in the intersection of two or more curves of the linear system |CG|. Similarly,
codimpXrGs ´ V q ě 2.
Finally, by tensoring with a line bundle of degree G, we get an isomorphism Pic0CG » PicGCG . □

The compactified Jacobian Pic0CG is an open subscheme of the moduli of simple sheaves on
X, SplX . Then, the symplectic structure constructed in Appendix 1 induces a symplectic
structure on Pic0CG . Moreover, XrGs is irreducible symplectic, see [Muk84]. Since Pic0CG and
XrGs are birational equivalent in codimension 1 and irreducible symplectic, they are deformation
equivalent, see [Huy96]. In particular, epPic0CGq “ epXGq. Hence, we have

ÿ

Gě0

epPic0CGqqG “
ź

ně1

p1 ´ qnq´24.

Now, we study the contributions of each curve in the family CG to epPic0CGq.

Lemma 1.4. Let C be a curve and let Pic0pCq be its compactified Jacobian. For L P Pic0pCq,
we consider its associated partial normalisation π : C 1 “ SpecpEndpLqq //C. Then, there exists
an OC1-module of rank 1, L1, such that L » π˚L1.

Proof. We have that EndpLq is an OC-subalgebra of the sheaf of rational functions on C.
Additionally, via Cayley–Hamilton Theorem, EndpLq is a finitely generated OC-module because
L is coherent. Hence, EndpLq is contained in OC̃ for C̃ the normalisation of C. Given an OC-
subalgebra that is contained in OC̃ , we can define a partial normalisation of C. Let π1 : C 1 //C

be the partial normalisation corresponding to EndpLq, then π1
˚OC1 » EndpLq. Via the above

identification L is a π˚OC1-module, so L corresponds to π1
˚L1, where L1 is some OC1-module of

rank 1. □
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Lemma 1.5. Let L P Pic0pCq and let L P Pic0pCq. Denote by π : C 1 //C the partial nor-
malisation of C associated to EndpLq. Then, L b L is isomorphic to L if, and only if π˚L is
trivial.

Proof. There is a L1 be a rank 1 OC1-module such that L “ π˚L1. Via the projection formula,
we have L b L » π˚pL1 b π˚Lq. Hence, if π˚L is trivial, we have L b L » L. On the other
hand, assume that L b L » L. We have

HomOC
pL,Lq » HomOC

pL,L b Lq » EndOC
pLq bOC

L » π˚OC1 b L » π˚π
˚L,

which yields HompL,Lq » H0pC 1, π˚Lq. Let s P H0pC 1, π˚Lqzt0u correspond to idL. As π˚L is
a line bundle of degree 0, divpsq does not have poles or zeros. Thus 1{s P H0pC 1, pπ˚Lq_qzt0u,
and so π˚L is trivial. □

Let us use this Lemma to prove that non-rational curves in the family CG // |CG| do not
contribute to epPic0CGq.

Theorem 1.6. Let C be a proper (reduced) curve over C and let ν : C̃ //C be its normalisation.
Then, we have the short exact sequence

0 // kerpν˚q // Pic0pCq
ν˚ // Pic0pC̃q // 0,

where ν˚ is the pullback. Furthermore, kerpν˚q is affine, which implies via the structure theorem
of commutative affine abelian groups over C that kerpν˚q » G‘d1

m ‘ G‘d2
a .

Proposition 1.7. Let C be an integral curve whose normalisation C̃ has genus G ě 1. Then,
epPic0pCqq “ 0.

Proof. It is enough to show that for any n ą 0, there exists a group of order n acting freely on
Pic0pCq. Via Theorem 1.6, we have the exact sequence

0 //G // Pic0pCq
π˚ // Pic0pC̃q // 0,

where C̃ denotes the normalisation of C and G is a product of additive and multiplicative
groups. In particular, G is an injective object in the category of abelian groups and the above
sequence splits as a sequence of abelian groups. Denote by s the section of π˚.
As C̃ is smooth of genus G, Pic0pC̃q » CG{Λ and its n-th torsion subgroup is of the form
pZ{nq2G. Hence, via the splitting, we find a subgroup of order n of Pic0pCq for any n ą 0,
say xGy for G P Pic0pC̃q Ă Pic0pCq. We consider the action of xGy on Pic0pCq induced by
the tensor product. This action is free. Indeed, let L P Pic

0
pCq, such that Gm b L » L,

and let C 1 “ SpecpEndpLqq be the partial normalisation of C associated to L, which fits in
π : C̃

π1
// C 1 π1 // C. Since Gm b L “ L, we have that π1˚Gm » OC1 by Lemma 1.5. Hence,

π˚Gm “ π1˚π1˚Gm » OC̃ . Then, applying the section s we obtain Gm “ OC , so the action is
free. This implies that for all n ą 0, n divides epPic0pCqq, and so epPic0pCqq “ 0. □
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Corollary 1.8. Denote by |CG|rat Ă |CG| the subset of rational curves. Then, |CG|rat is finite
and we have

epPic0CGq “
ÿ

tP|C|rat

epPic0pCtqq.

Proof. Assume that |CG|rat is not finite. Then, it contains a curve, which produces a ruling of
the K3 surface X. This is a contradiction. Furthermore, note that given a surjective morphism
f : Y //Z of complex projective varieties such that the topological Euler characteristic of its
fibres is trivial, we have epY q “ 0. Indeed, this is clear if f is a locally trivial fibration. In the
general case, there exists an stratification of f such that f is a locally trivial fibration on each
stratum, [Ver76]. Consider the morphism p : Pic0CG

// |CG| restricted to p´1p|CG| ´ |CG|ratq.
Then, by Proposition 1.7, we have epp´1p|CG| ´ |CG|ratqq “ 0. □

The previous Corollary yields

epGq “
ÿ

tP|C|rat

epPic0pCtqq,

where |CG|rat Ă |CG| denotes the rational locus. Hence, we interpret epPic0pCtqq as the multi-
plicity of the curve Ct. We show now that, if Ct is a nodal curve, epPic0pCtqq “ 1, and explore
the relation between the singularities of Ct and the value of epPic0pCtqq.

Proposition 1.9. Let C be an integral rational curve. Denote by Ĉ //C its minimal unibranch
partial normalisation. Then, we have epPic0pCqq “ epPic0pĈqq.

Proof. By Proposition 1.7, the claim holds for non-rational curves. Assume that C is a rational
curve. Denote its singular locus by Σ, and its preimage along the normalisation π : C̃ //C by
Σ̃. To show epPic0pCqq “ epPic0pĈqq, it is enough to prove that for any n ě |Σ̃|, there exists a
line bundle Ln P Pic0pCq of order n such that Ln acts freely on Pic0pCq ´ π˚pPic0pĈqq.
We have the exact sequence

1 //O˚
C

//O˚

C̃
//O˚

C̃
{O˚

C
// 1,

from which follows the isomorphism H0pC,O˚

C̃
{O˚

Cq
» // Pic0pCq. Then, we aim to construct

corresponding global sections of O˚

C̃
{O˚

C . The evaluations O˚
C

// ‘Σ C˚ and O˚

C̃
// ‘Σ̃ C˚

produce a surjective homomorphism O˚

C̃
{O˚

C
// ‘Σ̃ C˚{ ‘Σ C˚. For any integer n ě |Σ̃| we

can find a section s in a neighbourhood of Σ̃ such that the values spxiq are different for each
xi P Σ̃, and such that n is minimal with sn being a section of OC . Let Ln be the line bundle
associated to s.
Given F P Pic0pCq´π˚pPic0pĈqq, let π1 : C 1 “ SpecpEndpFqq //C be the partial normalisation
associated to F , such that EndpFq » π1

˚OC1 . Note that C 1 is not unibranch, otherwise we have
a factorisation C 1 // Ĉ //C, which contradicts that F R π˚pPic0pĈqq. Thus, there are two
points in Σ̃ mapping to the same point in C 1, which implies that the section s associated to Ln

does not belong to O˚
C1 since s takes distinct values on different elements of Σ̃ by construction.
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As OC
� � //OC1 , we have a commutative diagram

H0pO˚

C̃
{O˚

Cq
» //

��

J0pCq

��
H0pO˚

C̃
{O˚

C1q
» // J0pC 1q ,

from which we conclude that the pullback of Ln to Pic0pC 1q is non-trivial. By Lemma 1.5, we
have that Ln b F is not isomorphic to F . □

Corollary 1.10. For a rational nodal curve C, we have epPic0pCqq “ 1.

Proof. The minimal unibranch normalisation of a rational nodal curve is P1. Hence,

epPic0pCqq “ epPic0pP1qq “ ept˚uq “ 1.

□

Finally, in Appendix 2 we explore how epPic0pCqq depends on the singularities of C for the
case of simple singularities.

2. Counting partial normalisations

In this section, we prove that given an integral Gorenstein curve C of arithmetic genus G
and geometric genus G̃, we have the following relation

ÿ

i

epCrisqqi`1´G “
ÿ

G̃ďgďG

ngpCqFgpqq,

where epCrisq denotes the topological Euler characteristic of the Hilbert scheme of points Cris,
and Fgpqq is defined as follows. For a smooth curve Xg of genus g, we set

Fgpqq :“
ÿ

iě0

epXpiq
g qqi`1´g,

where epXpiq
g q denotes the topological Euler characteristic of the i-th symmetric product of Xg.

Additionally, we show that ngpCq are integers and, if C is a nodal curve, ngpCq counts precisely
the partial normalisations of C of arithmetic genus g. This section grew out of hints and
questions suggested by Prof. Richard Thomas, for which I am very grateful.

Lemma 2.1. Let Xg be a smooth curve of genus g. Then, for |q| ă 1, we obtain

Fgpqq :“
ÿ

iě0

epXpiq
g qqi`1´g “ q1´gp1 ´ qq2g´2.

Proof. We show that for any topological space X we have
ř

iě0 epX
piqqqi “ p1 ´ qq´epXq. Note

that epXpiqq only depends on epXq. By the identity pX \ t˚uqpiq “ Xpiq \ pX \ t˚uqpi´1q, we
have

ÿ

iě0

epXpiqqqi “ p1 ´ qq
ÿ

i

eppX \ t˚uqpiqqqi.

Since epX \ t˚uq “ epXq ` 1, we may assume epXq ě 0; otherwise, we add sufficiently many
points to X. Moreover, as our claim only depends on epXq, we may reduce to the case where
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X consists of epXq points. In this situation, epXpiqq counts unordered length i tuples of points
in X, and so

epXpiqq “

ˆ

i` epXq ´ 1

i

˙

.

Substituting these values gives the desired result. □

Let C be a Gorenstein curve of arithmetic genus G. Consider the morphism

φi : C
ris //Mp1, i` 1 ´Gq “ Pic

i
pCq, D � // ID.

For a general divisor D in Cris, whose support intersects the singular locus of C, its associated
ideal sheaf ID is not a line bundle. However, it is a locally free sheaf of rank 1. Hence, φi is
well-defined. Clearly, the fibres of the above morphism are φ´1

i pFq “ PpH0pFqq.
Additionally, consider the morphism

(2.1) ψi : Mp1, i` 1 ´Gq //Mp1,´pi` 1 ´Gqq, F � //HomOC
pF , ωCq “ F_ b ωC ,

which is an isomorphism. Indeed, define ϕ : Mp1,´pi ` 1 ´ Gqq //Mp1, i ` 1 ´ Gq given by
G � // G_ b ωC . Note that ϕψipFq “ F__ and ψiϕpGq “ G__. Hence, we conclude via the
following lemma.

Lemma 2.2. Let C be an integral Gorenstein curve. Then, any torsion free sheaf of rank 1 is
reflexive, i.e. the natural morphism F //F__ is an isomorphism.

Proof. See Lemma 1.1. in [Har86]. □

Via Serre duality, we have that

H1pFq_ “ Ext1pOC ,Fq_ “ HompF , ωCq “ H0pC,HompF , ωCqq,

where the last equality follows by the global-local Ext spectral sequence as Ext1pG,OCq “ 0 for
any torsion free sheaf G of rank 1 on a Gorenstein curve, see Lemma 2.3.

Lemma 2.3. Let C be an integral Gorenstein curve and let G be a torsion free sheaf of rank 1.
Then, ExtipG,OCq “ 0 for i ą 0.

Proof. See Lemma 1.1. in [Har86]. □

Consider following stratification via h0pFq:

(2.2) Mp1, i` 1 ´Gq “
ğ

kě0

Sk, where Sk :“ tF P Mp1, i` 1 ´Gq : h0pFq “ ku.

For F P Mp1, i` 1´Gq we have i` 1´G “ χpFq “ h0pFq ´h1pFq, so the above stratification
can equivalently be described by fixing h1pFq. In particular, the stratification (2.2) induces an
stratification on Mp1,´pi` 1 ´Gqq as h0pHomOC

pF , ωCqq “ h1pFq, which is compatible with
the isomorphism defined in (2.1). This observation is the key step toward the following result.
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Lemma 2.4. Let C be a Gorenstein curve of arithmetic genus G. Then, we have

epCri`G´1sq ´ epCr´i`G´1sq “ i ¨ epPic0pCqq,

where Pic0pCq » Mp1, i` 1 ´Gq denotes the compactified Jacobian of C.

Proof. We show the following equivalent relation

epCrisq ´ epCr2G´2´isq “ pi` 1 ´GqepPic0pCqq.

Let ψ´1
i ˝ φ2G´2´i : C

r2G´2´is //Mp1, i ` 1 ´ Gq, where ψi and φ2G´2´i are the morphisms
defined above. This morphism has fibres

pψ´1
i ˝ φ2G´2´iq

´1pFq “ PpH0pC,HomOC
pF , ωCqqq.

Hence, the stratification (2.2) yields

epCr2G´2´isq “
ÿ

kě0

h0pHompF , ωCq,F P SkqepSkq “
ÿ

kě0

pk ´ pi` 1 ´GqqepSkq.

Similarly, the morphism φi : C
ris //Mp1, i` 1 ´Gq and the stratification (2.2) produce

epCrisq “
ÿ

kě0

kepSkq.

Finally, we have an isomorphism

Mp1, i` 1 ´Gq “ PicipCq
bL
» Pic0pCq

induced by tensoring with any line bundle of degree i. This isomorphism and the previous two
equations yield the desired result. □

Lemma 2.5. Let F pqq “
ř

χ aχq
χ be a Laurent series with aχ´a´χ “ χc, where c is a constant.

Then, there exist coefficients ng such that

F pqq “
ÿ

gě0

ngq
1´gp1 ´ qq2g´2.

Furthermore, the coefficients ng are integers if, and only if the coefficients aχ are integers.

Proof. For |q| ă 1, we have

F pqq “
ÿ

χą0

a´χq
´χ ` a0 `

ÿ

χą0

aχq
χ “

ÿ

χą0

aχpqχ ` q´χq ` c
ÿ

χą0

p´χqq´χ ` a0

“
ÿ

χą0

aχpqχ ` q´χq ` cqp1 ´ qq´2 ` a0.

By induction we see that any Laurent polynomial qi ` q´i can be written as linear combination
of the rational functions tFgu1ďgďi`1 with coefficients in Z, where Fgpqq :“ q1´gp1 ´ qq2g´2.
Furthermore, both tqi`q´iui and tFgpqqug are bases of the vector space of Laurent polynomials
invariant under the transformation q � // q´1. This ensures that ng are integers if, and only if
aχ are integers. □
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Theorem 2.6. Let C be a Gorenstein curve of arithmetic genus G. Then, there exist integers
ngpCq P Z, such that

(2.3)
ÿ

iě1´G

epCri`G´1sqqi “
ÿ

0ďgďG

ngpCqFgpqq,

where Fgpqq :“
ř

iě0 epΣ
risqqi`1´g “ q1´gp1 ´ qq2g´2 for a smooth curve Σ of genus g.

Proof. By Lemma 2.4,
ř8

i“1´G epC
ri`G´1sqqi satisfies the condition of Lemma 2.5. Thus, we

have
ÿ

iě1´G

epCri`G´1sqqi “
ÿ

gě0

ngpCqFgpqq.

Note that
ř

0ďgďN ngFgpqq has a pole of order N ´ 1 at 0. Since the left hand side does not
have poles of order greater than G ´ 1 at 0, we conclude that the sum on the right hand side
runs over 0 ď g ď G. □

In the previous Theorem, we established that ngpCq “ 0 for all g ą G. Since we aim to
interpret the integers ngpCq as counting (up to multiplicity) partial normalisations of C of
arithmetic genus g, we also expect ngpCq “ 0 for all g ă G̃, where G̃ denotes the the geometric
genus of C. This is indeed the case for integral Gorenstein curves.

Theorem 2.7. Let C be an integral Gorenstein curve of arithmetic genus papCq “ G and
geometric genus pgpCq “ G̃. Then, we have

ÿ

iě1´G

epCrisqqi “
ÿ

G̃ďgďG

ngpCqFgpqq.

Proof. The central idea is to compare the invariants ngpCq with the corresponding invariants
ngpC0q, where C0 denotes a rational curve with the same singularities of C.

Denote by Csm and Csg the smooth and singular locus of C, respectively. We have the
stratification

(2.4) Cris “
ğ

0ďlďi

Cri´ls
sg ˆ Crls

sm,

where we write a divisor D P Cris as D “ Dsm \ Dsg for Dsm and Dsg the base changes of D
along the immersions Csm

� � //C and Csg
� � //C, respectively.

By smoothness, we have Crls
sm “ C

plq
sm. Then,

ÿ

iě0

epCrisqqi “
ÿ

iě0

r
ÿ

0ďlďi

epCri´ls
sg qepCplq

smqsqi “
ÿ

iě0

epCris
sg qqip1 ´ qq´epCsmq,

where we used
ř

jě0 epC
pjq
smqqj “

ř

jě0 epX
pjq

G qqj “ p1 ´ qq´epCsmq for XG any smooth curve of
arithmetic genus G, see Lemma 2.1. A direct calculation shows that epCsmq “ epXGq, and so
epC

pjq
smq “ epX

pjq

G q for any j.
Let C0 be a rational curve with the same singularities as C, such that we obtain C from C0 after
attaching G̃ handles away from its singular locus. By construction, epCris

sg q “ epC
ris
0,sgq. Further-

more, Csm is obtained from C0,sm after attaching G̃ handles. A Mayer–Vietories computation
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then gives epCsmq “ epC0,smq ´ 2G̃. Hence, we have
ÿ

iě0

epCrisqqi “
ÿ

iě0

epCris
sg qqip1 ´ qq´epCsmq “ p1 ´ qq2 G̃

ÿ

iě0

epC
ris
0,sgqqip1 ´ qq´epC0,smq.

We consider an analogue stratification to the one in (2.4) for Cris
0 . And, as before, we obtain

ÿ

iě0

epC
ris
0 qqi “

ÿ

iě0

epC
ris
0,sgqqip1 ´ qq´epC0,smq.

Then, putting the above equations together,
ÿ

iě0

epCrisqqi “ p1 ´ qq2 G̃
ÿ

iě0

epC
ris
0 qqi.

By construction, C0 has arithmetic genus G´ G̃. Then, by Theorem 2.6 we have

q1`G̃´G
ÿ

iě0

epC
ris
0 qqi “

ÿ

0ďgďG´G̃

ngpC0qFgpqq.

Putting everything together and using Theorem 2.6 for C, we obtain

G
ÿ

g“0

ngpCqFgpqq “ q1´G
ÿ

iě0

epCrisqqi “ p1 ´ qq2 G̃q´ G̃
G´G̃
ÿ

g“0

ngpC0qFgpqq “

G
ÿ

g“G̃

ng´G̃pC0qFgpqq.

We conclude that ngpCq “ 0 for g ă G̃ and ngpCq “ ng´G̃pC0q for G̃ ď g ď G. □

We now present two examples to illustrate that the numbers ngpCq depend on the singularities
of C, and that while in some cases ngpCq precisely counts partial normalisations of C, in general
this holds only up to a multiplicity that depends on the singularities of C.

Example 2.8. Let C be a rational curve with one nodal singularity. Then, n0pCq “ 1 and
n1pCq “ 1.

Proof. We have
ÿ

kě0

epCrksqqk “ n0F0pqq ` n1.

Then, n1 “ a0 “ epCr0sq “ 1 and n0 “ c “ epPic0pCqq “ 1. □

Example 2.9. Let C be a rational curve with one cuspidal singularity. Then, n0pCq “ 2 and
n1pCq “ 1.

Proof. As in the previous example, we have n1 “ epCr0sq “ 1 and n0 “ epPic0pCqq. Since
cuspidal singularities are of type A2, we have epPic0pCqq “ 2, see Appendix 2. □

Note that in Example 2.8, the numbers ngpCq explicitly count partial normalisations of C.
We now show that this holds for any nodal curve.

Lemma 2.10. Let the multiplicative group Gm act on a scheme of finite type. Then, we have
epXq “ epXGmq. In particular, if the action has no fixed points, epXq “ 0.

Proof. See Corollary 2 in [Bia73]. □
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Theorem 2.11 ([KST11]). Let C be a nodal curve of arithmetic genus G and geometric genus
G̃. In particular, C has G´ G̃ nodes. Then,

epCrksq “
ÿ

0ďjďk

ˆ

G´ G̃

j

˙

epC
pk´jq

G´j,smq,

where CG´j denotes any partial normalisation of C at j nodes and CG´j,sm denotes its smooth
locus.

Proof. Let Σ Ă Csg be a subset of the singular locus of C. Denote by πΣ : CΣ
//C the partial

normalisation of C at Σ (desingularisation over Σ) and by CΣ,sm its smooth locus.
By smoothness, Cpiq

Σ,sm “ C
ris
Σ,sm for all i. Define iΣ : C

pk´|Σ|q

Σ,sm
//Crks in the following form.

Given an effective Cartier divisor Z “ Z1 YZ2 Ă CΣ,sm, where Z1 :“ ZX pCΣ,sm ´π´1
Σ pΣqq and

Z2 :“ Z X π´1
Σ pΣq, we pushforward Z1 along the isomorphism C ´ Σ » CΣ ´ π´1

Σ pΣq induced
by the partial normalisation πΣ : CΣ

//C.
Let us now describe how to attach the contribution from Z2. Let p P Σ Ă C be a node, then the
local model of C around p is given by Crrx, yss{pxyq and its normalisation has two local branches
corresponding to the x- and y-axes. If Z2 has multiplicities a and b along the x and y branches
respectively. we push Z2 down around p to the length a ` b ` 1 subscheme with local ideal
pxa`1, yb`1q (i.e. we thicken p further by the corresponding multiplicities of Z2 on x and y). We
repeat this process with all the nodes p P Σ. Note that if Z2 “ H, we attach each node p P Σ

as a length 1 contribution. This construction yields a closed immersion iΣ : C
pk´|Σ|q

Σ,sm
� � //Crks.

Note that each iΣ produces a closed subschemes whose support contains Σ and does not contain
Csg ´ Σ. Thus, the images of the morphisms iΣ are disjoint and we obtain

ğ

ΣĂCsg

C
pk´|Σ|q

Σ,sm Ă Crks.

The divisors that do not intersect the singular locus Csg are obtained via the above construction
applied to Σ “ H. On the other hand, for Σ ‰ H, the divisors obtained via the above described
pushforward along iΣ are not Cartier. Thus, the construction misses precisely those points that
correspond to Cartier divisors on C and that intersect the singular locus Csg. However, we
claim that those divisors do not contribute to the Euler characteristic of Crks.
Let pi P Csg be a node, so the local model of C around pi is given by Crrx, yss{pxyq. The effective
Cartier divisors of C that meet Csg have the form phipxq, gipyqq around pi, where hipxq P Crrxss˚

and gipyq P Crryss˚ and hip0q “ gip0q. Consider the C˚-action on the set of effective Cartier
divisors that meet the singular locus Csg given by

t ¨ phipxq, gipyqqCsg

� // phiptxq, gipyqqCsg .

At the level of formal series, this action has as fixed points the elements with constant hipxq.
Hence, at the level of Cartier divisors, it has no fixed points. Then, via Lemma 2.10, we have
epCrks ´

Ů

ΣĂCsg
C

pk´jq

Σ,sm q “ 0.
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Thus, the stratification defined previously yields

epCrksq “
ÿ

0ďjďk

ÿ

ΣĂCsg

|Σ|“j

epC
pk´jq

Σ,sm q “
ÿ

0ďjďk

ˆ

G´ G̃

j

˙

epC
pk´jq

G´j,smq,

where CG´j,sm denotes the smooth locus of any partial normalisation CG´j of C at j nodes. □

Corollary 2.12. Let C be a nodal curve of arithmetic genus G and geometric genus G̃. In
particular, C has G´ G̃ nodes. Then,

nipCq “

ˆ

G´ G̃

G´ i

˙

is the number of partial normalisations of C at subsets Σ Ă Csg of cardinality G´ i.

Proof. By comparing coefficients on both sides of equation (2.3), we conclude that the integers
nkpCq satisfy the following relation (this result does not require C nodal):

(2.5) nG´kpCq “ epCrksq ´
ÿ

G´k`1ďiďG

nipCqepX
pk´G`iq
i q,

where Xi denotes any smooth curve of genus i. From this relation follows nGpCq “ 1. Assume
that the claimed result holds for i ą G´ k. By Theorem 2.11, we have

epCrksq “
ÿ

0ďjďk

ˆ

G´ G̃

j

˙

epC
pk´jq

G´j,smq,

where CG´j,sm denotes the smooth locus of any partial normalisation CG´j of C at j nodes.
Note that epCpk´jq

G´j,smq “ epX
pk´jq

G´j q, where XG´j denotes any smooth curve of genus G ´ j.
Then, the induction hypothesis applied to (2.5) yields

nG´kpCq “

ˆ

G´ G̃

k

˙

epX
p0q

G´kq “

ˆ

G´ G̃

k

˙

.

□

3. Stable pair and BPS invariants

In this section, we present the BPS invariants for the total moduli space of stable pairs on
a K3 surface following the approach by Kawai and Yoshioka, [KY00]. The setting of this sec-
tion is the following. Let pX,Hq be a polarised K3 surface and let CG Ă X be a curve with
C2
G “ 2G ´ 2 such that CG ¨ H “ mintL ¨ H ą 0 : L P PicpXqu. We call the later condition

condition of minimal intersection.

Under the above assumptions, in Subsection 3.1 we prove following Yau–Zaslow’s type gen-
erating function for the total moduli of stable pairs

(3.1)
ÿ

Gě0

ÿ

dě0

epPd`1´GpX, rCGsqqqG´1yd`1´G “
py´1{2 ´ y1{2q´2

q
ś

ně1p1 ´ qnq20p1 ´ qnyq2p1 ´ qny´1q2
,

where epPd`1´GpX, rCGsqq denotes the topological Euler characteristic of the moduli space of
stable pairs of curve class rCGs and Euler characteristic d`1´G. The concept of stable pair is
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introduced later in this section. The subsection 3.1 is based on [KY00], however we incorporate
modified versions of some proofs of Yoshioka, see Lemmas 3.3 and 3.4. These modifications are
essential for extending the results to our setting.

In Subsection 3.2, we use our calculations from Section 2 to prove the relation
ÿ

Gě0

ÿ

kě1´G

epPkpX, rCGsqqykqG “
ÿ

Gě0

ÿ

gě0

Ng,Gy
1´gp1 ´ yq2g´2qG,

where Ng,G are integers. This relation, together with equation (3.1), allow us to recover the
usual Yau–Zaslow’s formula from equation (1.1) in the limit y // 1. This gives us an interpre-
tation of the BPS invariants N0,G.

Finally, in Subsection 3.3 we explore the contributions of curves in the linear system |CG|

to the BPS invariants Ng,G and relate them to the integers ngpCq introduced in Section 2. This
allows us to conclude Ng,G “ 0 for g ą G.

3.1. The generating function for stable pairs. Let pX,Hq be a polarised K3 surface and
let CG Ă X be a curve with C2

G “ 2G ´ 2 satisfying the condition of minimal intersection
introduced at the beginning of the section.

Remark 3.1. Let C Ă X be a curve satisfying the condition of minimal intersection. Then,
any element in |C| is integral. Furthermore, C is primitive. Indeed, assume there exists non-
integral D P |C|, then we can write D “

ř

i aiDi for Di integral. Since D is effective, we obtain
a contradiction to the condition of minimal intersection.

We denote by Mpr, rCs, aq the moduli space of µ-(semi)stable sheaves on X with respect
to the fixed polarisation H, of rank r, first Chern class rCs and Euler characteristic a, see
Appendix 1. In this section, we assume that all the spaces moduli Mpr, rCs, aq are moduli of
µ-stable sheaves. By the condition of minimal intersection on C, for a general polarisation H,
Mpr, rCs, aq is a moduli of µ-stable sheaves, see Theorem 4.C.3. in [HL10].

Given a Mukai vector v, consider the moduli functor

SystnpvqpSq :“ tq˚L //F : F P MpvqpSq,L locally free sheaf of rank n on Su,

where q : X ˆ S //S denotes the projection. This corresponds to the coarse moduli space of
coherent systems introduced by Le Potier, see [Le 93], under a choice of stability condition for
which a coherent system q˚L //F is stable if, and only if F is stable. Note that for S “ C, a
choice q˚L //F corresponds to a choice of subspace U Ă H0pFq with dimpUq “ n.

Theorem 3.2 ([KY00]). If C Ă X satisfies the condition of minimal intersection, Systnpr, rCs, aq

is a smooth scheme of dimension xv, vy ` 2 ´ npn` xvpOXq, vyq.

Proof. It was proved in [He98] that the tangent space at Λ :“ pU bOX
//Fq P Systnpr, rCs, aq

is given by Ext1pΛ,Λq and obstructions of infinitesimal liftings lie in the kernel of the following
morphism

τ : Ext2pΛ,Λq //Ext2pF ,Fq
tr // H2pX,OXq.
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So, we need to show that τ is injective. In [He98] was also shown that

Ext2pΛ,Λq » Ext2pΛ,Fq.

Moreover, there is an exact sequence

0 //Ext0pΛ,Λq // HompF ,Fq // HompU b OX ,Fq{V

//Ext1pΛ,Λq // Ext1pF ,Fq // Ext1pU b OX ,Fq

//Ext2pΛ,Λq // Ext2pF ,Fq // Ext2pU b OX ,Fq “ 0,

where V :“ impHompU ˆ OX , U ˆ OXq // HompU ˆ OX ,Fqq. Then, the Serre dual of τ is
given by the composition

(3.2) H0pX,OXq // HompF ,Fq
� � //HompF , U b OX

//Fq.

We are done if we show that HompF , U b OX
//Fq » C.

Let

(3.3) 0 //OX b Ext1pF ,OXq_ // G //F // 0

be the universal extension, i.e. the extension class corresponding to the identity element in

EndpExt1pF ,OXqq » Ext1pF ,OX b Ext1pF ,OXq_q.

By (3.2), we have dimHompF , U b OX
//Fq ě 1. Hence, via the exact sequence (3.3) it is

sufficient to show that dimHompG, U b OX
//Fq “ 1 and the natural morphism

HompF , U b OX
//Fq //HompG, U b OX

//Fq

is injective.

By Theorem 2.5. in [Yos99] and Serre duality, Ext1pG,OXq “ H1pX,Gq_ “ 0. By stabil-
ity of G we have HompG,OXq “ 0. Furthermore, we have the exact sequence

HompG, U b OXq // HompG,Fq //HompG, U b OX
//Fq // Ext1pG, U b OXq,

hence HompG,Fq » HompG, U b OX
//Fq. Note that HompG,Fq fits in the exact sequence

HompG,O‘i
X q // HompG,Gq // HompG,Fq // Ext1pG,O‘i

X q,

where i :“ dimExt1pF ,OXq. Then, we obtain dimHompG, U b OX
//Fq “ 1 by simplicity of

G.

Consider the exact sequence

Ext´1pOX‘i, U b OX
//Fq //HompF , U b OX

//Fq //HompG, U b OX
//Fq.

We show that Ext´1pOX‘i, U b OX
//Fq “ 0. Note that

Ext´1pOX‘i, U b OX
//Fq “ kerpHompO‘i

X , U b OXq // HompO‘i
X ,Fqq.

Since U is a subspace of HompOX ,Fq, we obtain the claimed result. □
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In order to construct the generating function of the total moduli space of stable pairs, we
need some intermediate results. Following two lemmas have been proved by Yoshioka under
the assumption PicpXq “ CGZ, cf. [Yos99]. Here, we present different proofs of the statements
under a weaker assumption, i.e. CG satisfying the minimal intersection condition.

Lemma 3.3. Let CG Ă X be a curve of arithmetic genus G satisfying the condition of minimal
intersection. Given a µ-stable sheaf E with r :“ rkpEq ě 1, d :“ degpEq “ CG ¨H and a non-zero
morphism ϕ : OX

// E, we have that ϕ is injective and cokerpϕq is µ-semistable.
In this section we assumed that µ-semistable sheaves are µ-stable, hence cokerpϕq is µ-stable.

Proof. Let us first consider the case r ą 1. Then, ϕ is not surjective. By stability of E , we have
0 ď degpimpϕqq{ rkpimpϕqq ă d{r. If degpimpϕqq ą 0, by minimality of d we have d ď degpimpϕqq

and so dr ď degpimpϕqqr ă d rkpimpϕqq. Then, r ă rkpimpϕqq, which is a contradiction. Then,
µpOX{ kerpϕqq “ µpOXq, which contradicts the stability of OX unless ϕ is injective.
Thus, we have the short exact sequence

(3.4) 0 //OX
ϕ // E //F :“ cokerpϕq // 0.

In particular, degpFq “ d and rkpFq “ r ´ 1. Assume that F is not µ-semistable, then there
exists a quotient sheaf of F , say F // // G such that degpGq{ rkpGq ă d{pr´1q. Since E surjects
onto F , then G is also a quotient sheaf of E . By stability of E and by minimality of of d we get

dpr ´ 1q ă degpGqpr ´ 1q ă d rkpGq,

and so r ´ 1 ă rkpGq, which contradicts that G is a quotient sheaf of F .
For the case r “ 1, ϕ : OX

// E is injective, otherwise its kernel destabilises OX , and cokerpϕq

has rank 0. We have that supppcokerpϕqq “ C is a curve. Since degpcokerpϕqq “ d and we
assumed d to be minimal among positive intersections, C must be integral. Finally, as cokerpϕq

is a torsion free sheaf of rank 1 on C and C is integral, it is µ-stable. □

Lemma 3.4. Let C be a curve satisfying the condition of minimal intersection. Then, if F is
a µ-stable sheaf with d “ degpFq “ C ¨H and rank r “ rkpFq ě 1, any non-trivial extension

0 //OX
// E //F // 0

is µ-semistable.

Proof. Assume that E is not µ-semistable. Then, there exists stable subsheaf G �
� // E of degree

dG and rank rG such that rG ă rkpEq “ r ` 1 and 0 ď d{pr ` 1q ă dG{rG. Then, d ď dG by
minimality. Moreover, the composition ϕ : G �

� // E //F is non-trivial, and so the stability of
F yields dG{rG ď d{r. In particular, r ď rG ă r ` 1, so we have rG “ r. Hence, by minimality
of d and the relation dG{rG ď d{r, we obtain dG “ d. Since F and G are µ-stable of same slope,
ϕ is an isomorphism in codimension 1.
Denote the extension class by e P Ext1pF ,OXq. Then, ϕ induces a morphism

Φ: Ext1pF ,OXq // Ext1pG,Fq,

sending e � // 0. We have Ext1pF{G,OXq “ 0, and so Φ is injective. Then, e “ 0, which is a
contradiction. □
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Remark 3.5. We define the following stratification

Mpr, rCs, aq “
ğ

iěr`a

Mpr, rCs, aqi,

where Mpr, rCs, aqi :“ tF P Mpr, rCs, aq : h0pFq “ iu. Analogously, we have the stratification

Syst1pr, rCs, aq “
ğ

iěr`a

Syst1pr, rCs, aqi,

where Syst1pr, rCs, aqi :“ tpF , s P H0pFqq : F P Mpr, rCs, aq, h0pFq “ iu. Given a sheaf
F P Mpr, rCs, aq with i ă r ` a, the condition h0pFq “ i does never hold because via stability
h2pFq “ hompF ,OXq “ 0.

Lemmas 3.3 and 3.4 allow us to prove following central result.

Theorem 3.6. Let C satisfy the condition of minimal intersection and let r ě 1, v “ pr, rCs, aq

and w “ pr ´ 1, rCs, a ´ 1q. Any element ps : OX
// Eq P Syst1pvq is injective and cokerpsq is

a µ-stable sheaf. Hence, we have a morphism

qv : Syst1pvq //Mpwq, s � // cokerpsq.

Moreover, by setting m “ 1 ´ pr ` aq, we obtain following diagram for i ě r ` a:

Syst1pvqi

pv

yy

qv

&&
Mpvqi Mpwqi´1

where the forgetful morphism pv is an étale locally trivial Pi-bundle and qv is an étale locally
trivial Pm`i-bundle.

Proof. The injectivity of any s : OX
// E P Syst1pvq and the stability of cokerpsq follow from

Lemma 3.3. The additivity of Mukai vectors on short exact sequences ensures vpcokerpsqq “ w.
Since h1pXq “ 0, we have h0pcokerpfqq “ h0pEq ´ h0pOXq “ i´ 1.
For the rest of the claim it is enough to check the fibres of the morphisms pv and qv. Clearly,
p´1
v pEq “ PpH0pX, Eqq. Additionally, Lemma 3.4 yields q´1

v pFq » PpExt1pF ,OXqq. Finally,
ext1pF ,OXq “ ext1pOX ,Fq “ h1pFq “ m ` i, as χpFq “ χpEq ´ χpOXq “ r ` a ´ 2, and
h2pFq “ hompF ,OXq “ 0 is clear for rank 0, and follows for positive rank by stability of F . □

Definition 3.7. Given a smooth complex projective variety V , we define its Hodge polynomial
by

χt,t1pV q :“

dimpV q
ÿ

p,q“0

p´1qp`qhp,qpV qtpt1q,

where hp,qpV q denotes the pp, qq-Hodge number of V .
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Lemma 3.8. Let π : V //W be an étale locally trivial Pn-bundle with V,W smooth, such that
V is projective over W . Then,

χt,t1pV q “ rn` 1sχt,t1pW q,

where rns :“ ptt1qn´1
tt1´1 .

Additionally, given a decomposition V “
Ť

i Vi into mutually disjoint locally closed subsets, we
have

χt,t1pV q “
ÿ

i

χt,t1pViq.

Proof. See Lemma 5.163 in [KY00]. □

Following result is the key part of Kawai–Yoshioka’s construction of the claimed closed form.

Theorem 3.9 ([KY00]). Let CG Ă X be a curve of arithmetic genus G satisfying the condition
of minimal intersection. Then, for r ` a ě 0, we have the decomposition

χt,t1pSyst1pr, rCGs, aqq “
ÿ

kě0

ptt1qpr`a`k´1qkrr ` a` 2ksχt,t1pMpr ` k, rCGs, a` kqq.

Note that the sum on the right hand side is not infinite as Mpr ` k, rCGs, a ` kq “ H for
G´ pr ` kqpa` kq ă 0.

Proof. Via Lemma 3.6, we have the diagram:
(3.5)

Syst1pr ` 1, rCGs, a` 1qr`a`1`i

p

ss

q

**
Mpr ` 1, rCGs, a` 1qr`a`1`i Mpr, rCGs, aqr`a`i

,

where p is a Pr`a`i étale bundle and q is a Pi´1 étale bundle.
This diagram and Lemma 3.8 yield

ÿ

iě0

risχt,t1pMpr, rCGs, aqr`a`iq “
ÿ

iě0

χt,t1pSyst1pr ` 1, rCGs, a` 1qr`a`1`iq

“
ÿ

iě0

rr ` a` 1 ` isχt,t1pMpr ` 1, rCGs, a` 1qr`a`1`iq

“
ÿ

iě0

rr ` a` 2 ` isχt,t1pMpr ` 1, rCGs, a` 1qr`a`2`iq.

We have ptt1qr`a`2ris ` rr ` a` 2s “ rr ` a` 2 ` is, hence via the stratification of Mpvq with
v “ pr ` 1, rCGs, a` 1q, we can write

ptt1qr`a`2
ÿ

iě0

risχt,t1pMpvqr`a`2`iq “
ÿ

iě0

prr ` a` 2 ` is ´ rr ` a` 2sqχt,t1pMpvqr`a`2`iq

“
ÿ

iě0

rr ` a` 2 ` isχt,t1pMpvqr`a`2`iq ´ rr ` a` 2sχt,t1pMpvqq.
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Putting the last two equations together we obtain

ÿ

iě0

risχt,t1pMpr, rCGs, aqr`a`iq “
ÿ

iě0

rr ` a` 2 ` isχt,t1pMpvqr`a`2`iq

“ ptt1qr`a`2
ÿ

iě0

risχt,t1pMpvqr`a`2`iq ` rr ` a` 2sχt,t1pMpvqq,

where v “ pr ` 1, rCGs, a ` 1q. Doing the above calculation inductively, we have the following
relation
(3.6)

ÿ

iě0

risχt,t1pMpr, rCGs, aqr`a`iq “
ÿ

kě1

ptt1q
řk´1

j“1 pr`a`2jq
rr ` a` 2ksχt,t1pMpr ` k, rCGs, a` kqq.

The additivity of the Hodge polynomial and Lemma 3.8 applied to diagram (3.5) imply

χt,t1pSyst1pr, rCGs, aqq “
ÿ

iě0

rr ` a` isχt,t1pMpr, rCGs, aqr`a`iq.

We note that ptt1qr`aris ` rr ` as “ rr ` a` is. Hence, as before, we can write

χt,t1pSyst1pr, rCGs, aqq “ ptt1qr`a
ÿ

iě0

risχt,t1pMpr, rCGs, aqr`a`iq ` rr ` asMpr, rCGs, aq.

Via equation (3.6), we obtain

χt,t1pSyst1pr, rCGs, aqq “
ÿ

kě0

ptt1qpr`a`k´1qkrr ` a` 2ksχt,t1pMpr ` k, rCGs, a` kqq,

where we used that
ř

0ďjďk´1pr ` a` 2jq “ pr ` a` k ´ 1qk. □

Theorem 3.10. Let CG Ă X be a curve satisfying the condition of minimal intersection. Then,
Mpr, rCGs, aq is deformation equivalent to XrG´ras. In particular, we have

χtt1pMpr, rCGs, aqq “ χtt1pXrG´rasq.

Proof. This result has been proved by Yoshioka for the case r ą 0, see Theorem 7.4. A modifi-
cation of Yoshioka’s proof for the case r “ 0 can be found in Theorem 7.1. □

Given a section s : OX
//F , we obtain the distinguished triangle

OX
s // F // rOX

//Fs “ Cpsq,

which yields the exact sequence

(3.7) 0 //HompCpsq,OXq //HompF ,OXq //HompOX ,OXq
t // Ext1pCpsq,OXq // . . . .

This allows us to define the following morphism.
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Theorem 3.11 ([KY00]). Let C Ă X satisfy the condition of minimal intersection. Then, we
have an isomorphism

ϕ : Syst1p0, rCs, aq
» // Syst1p1, rCs, 1 ´ aq, pOX

s // Fq
� // pOX

t // Ext1pCpsq,OXqq.

Furthermore, this induces following isomorphism at the level of the stratification

Syst1p0, rCs, aqa`i » Syst1p1, rCs, 1 ´ aq1`i.

Proof. See Proposition 5.128 in [KY00]. □

Corollary 3.12. Under the conditions of the previous theorem, we have the following diagram

Syst1p0, rCs, aqa`i » Syst1p1, rCs, 1 ´ aq1`i

p1ss p2 ++
Mp0, rCs, aqa`i Mp1, rCs, 1 ´ aq1`i ,

where the forgetful morphisms p1 and p2 are étale locally trivial Pa`i-, respectively P1`i-bundles.

Theorem 3.13 ([KY00]). Assume that CG Ă X satisfies the condition of minimal intersection
for all G ě 0. Then, for |q| ă |y| ă 1 holds

ÿ

Gě0

ÿ

dě0

χt,t1pSyst1p0, rCGs, d` 1 ´Gqqptt1q1´GqG´1yd`1´G

“
´1

qpyq8pq{yq8pptt1yq´1q8ptt1yqq8ptpt1q´1qq8pqq188 pt´1t1qq8

,

where pζq8 :“
ś

ně0p1 ´ ζqnq. In particular, by setting t “ t1 “ 1, we obtain:
(3.8)

ÿ

Gě0

ÿ

dě0

epSyst1p0, rCGs, d` 1 ´GqqqG´1yd`1´G “
py1{2 ´ y´1{2q´2

q
ś

ně1p1 ´ qnq20p1 ´ qnyq2p1 ´ qny´1q2
,

where ep´q denotes the topological Euler characteristic.

Proof. Let us first assume a ě 0. Apply Theorem 3.9 for the case r “ 0. Then,

ÿ

hě0,
aě0

χt,t1pSyst1p0, rCGs, aqqyaptt1q1´hqh´1 “
ÿ

hě0,
aě0,
kě0

ptt1qpa`k´1qkra` 2ksχt,t1pMpk, rCGs, a` kqqyaptt1q1´hqh´1

(3.9)

“
ÿ

hě0,
jěi,
iě0

ptt1qpj´1qiri` jsχt,t1pMpi, rCGs, jqqyj´iptt1q1´hqh´1

“
ÿ

hě0,
jěi,
iě0

ptt1qpj´1qiri` jsχt,t1pXrC2
G{2´ij`1sqyj´iptt1q1´hqh´1

“
tt1

q
p
ÿ

jěi

ÿ

iě0

ptt1q´iri` jsyj´iqijqp
ÿ

n

χt,t1pXrnsqptt1q´nqnq,
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where we used Theorem 3.10 in the third equality. For a ą 0, Corollary 3.12 yields
ÿ

iě1

risχt,t1pMp0, rCGs,´aqiq “
ÿ

iě1

ra` i` 1sχt,t1pMp1, rCGs, 1 ` aqa`i`1q.

By equation (3.6) and performing a similar calculation as in equation (3.9), for a ą 0, we obtain
(3.10)
ÿ

hě0,
aě0

χt,t1pSyst1p0, rCGs,´aqqy´aptt1q1´hqh´1 “
tt1

q
p
ÿ

iąj

ÿ

jě1

ptt1q´iri`jsyj´iqijqp
ÿ

n

χt,t1pXrnsqptt1q´nqnq.

Combining Equations (3.9) and (3.10), we have
ÿ

hě0,
aPZ

χt,t1pSyst1p0, rCGs, aqqyaptt1q1´hqh´1 “
tt1

q
p

ÿ

iě0,
ją0

ptt1q´iri` jsyj´iqijqp
ÿ

n

χt,t1pXrnsqptt1q´nqnq.

The following identity has been proved in [Hic88]:

tt1

q
p

ÿ

iě0,
ją0

ptt1q´iri` jsyj´iqijq “
tt1

qptt1 ´ 1q

ÿ

iě0,
ją0

pptt1yqjy´i ´ ptt1yq´iyjqqij

“
´pqq28pptt1q´1qq8ptt1qq8

qpyq8pq{yq8pptt1yq´1q8ptt1yqq8

,

where pζq8 :“
ś

ně0p1 ´ ζqnq. Finally, it has been proved that, see [Che96] and [GS93],
ÿ

n

χt,t1pXrnsqptt1q´nqn “
1

pptt1q´1qq8ptpt1q´1qq8pqq208 pt´1t1qq8ptt1qq8

.

□

Now, let us explore the relation between the moduli space of coherent systems Syst1p0, C, aq

and the moduli space of stable pairs.

Definition 3.14 (Stable pairs). A pair pF , sq consisting of a sheaf F on X supported in
dimension 1 together with a section s P H0pX,Fq is called stable pair if F is a pure sheaf and
cokerps : OX

//Fq has dimension 0.
Given by a curve i : C �

� //X and a divisor D Ă C, we obtain the typical example of an stable
pair via pi˚OCpDq, sDq, where sD is the canonical section associated to D.

Lemma 3.15 ([PT10]). An stable pair supported on a Gorenstein curve C is equivalent to a
0-dimension subscheme of C. Under this equivalence, the pair

0 //OC
s // F //Q // 0

is associated to the subscheme

OC » Ext0pOC ,OCq // Ext1pQ,OCq // 0

Proof. The key point is the following equivalence: given a generically locally trivial sheaf F on
a Gorenstein curve C, F is pure if, and only if ExtiCpF ,OCq “ 0 for i ą 0, see Appendix B in
[PT10].
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Let 0 //OC
s // F //Q // 0 be a stable pair. Then, by purity of F , we have the exact

sequence
0 //F_ //OC

// Ext1pQ,OCq // 0.

Hence, F_ is an ideal sheaf and Ext1pQ,OCq is isomorphic to the structure sheaf of a subscheme
of C 1.
On the other hand, let D P C be a divisor. Then, by purity of OC , we obtain the exact sequence

0 //OC
// I_
D

// Ext1pOD,OCq // 0,

where ID is the ideal sheaf associated to D. Moreover, ExtipID,OCq “ 0 for i ą 0. Thus,
I_
Z “ RHompID,OCq, and we note that

RHompI_
D ,ODq “ ID.

This implies ExtipI_
D ,OCq “ 0 for i ą 0, and so ID is pure. Hence, OC

// I_
D determines an

stable pair. □

Given a curve class rCs P H2pX,Zq, we denote by PapX, rCsq the moduli space of stable
pairs pF , sq with Euler characteristic χpFq “ a and c1pFq “ rCs. The following lemma relates
the moduli space of coherent systems Syst1p0, rCs, aq and the moduli space of stable pairs
PapX, rCsq.

Lemma 3.16. Let C Ă X be a curve satisfying the condition of minimal intersection. Then,
elements pF , sq P Syst1p0, rCs, aq are equivalent to stable pairs on X with support in |C|. In
particular, Syst1p0, rCs, aq “ PapX, rCsq.

Proof. Let pF , sq be a stable pair on X such that supppFq P |C|. Since C satisfies the condition
of minimal intersection, supppFq is integral. We have that cokerpOX

s // Fq has dimension 0,
so F is generically isomorphic to OsupppFq. In particular, F has rank 1 on its support. Finally,
pure sheaves of rank 1 on integral curves are µ-stable.
Let now pF , s P H0pFqq P Syst1p0, rCs, aq. We only need to verify that cokerpsq has dimension
0. As F is supported on a curve, cokerpsq is supported on dimension 1 or 0. Assume that
cokerpsq is supported in dimension 1, then it is supported on the whole C by integrality, and it
has positive rank on C. As c1pFq “ rCs, we have F has rank 1 on C 2. Then, since cokerpsq has
positive rank on C and it is a quotient sheaf of F , cokerpsq has rank 1 on C. This contradicts
the stability of F . □

The previous lemma allows us to write the result of Theorem 3.13 in the following form.
Given a family of curves tCG Ă XuGě0 of arithmetic genus G satisfying the condition of
minimal intersection, we have

ÿ

Gě0

ÿ

dě0

epPd`1´GpX, rCGsqqqG´1yd`1´G “
py´1{2 ´ y1{2q´2

q
ś

ně1p1 ´ qnq20p1 ´ qnyq2p1 ´ qny´1q2
.

1Note that Q may not be isomorphic to the structure sheaf of a subscheme of C.
2As F is torsion free on C and C is integral, c1pFq “ rrCs with r “ lengthOC,η

pFηq for η the generic point

of C
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3.2. Recovering the Yau–Zaslow formula. In this subsection, we show the following rela-
tion for a family of curves tCG Ă XuGě0 satisfying the condition of minimal intersection and
such that C2

G “ 2G´ 2:

(3.11)
ÿ

Gě0

ÿ

kě1´G

epPkpX, rCGsqqykqG “
ÿ

Gě0

ÿ

lě0

Nl,Gy
1´lp1 ´ yq2l´2qG.

We present here an approach that makes evident the contributions of elements of the linear
system |CG| to the BPS invariants Nl,G.

Recall that we proved in Lemma 2.4 that given a Gorenstein curve C of arithmetic genus
G, we have

(3.12) epCrk`G´1sq ´ epCr´k`G´1sq “ k ¨ epPic0pCqq,

where Pic0pCq denotes the compactified Jacobian of C.

Theorem 3.17. Let CG Ă X be a curve of arithmetic genus G satisfying the condition of
minimal intersection. Then, we have:

epPkpX, rCGsqq ´ epP´kpX, rCGsqq “ k ¨ α,

where α is a constant. In particular, there exist Nl,G P Z such that
ÿ

Gě0

ÿ

kě1´G

epPkpX, rCGsqqykqG “
ÿ

Gě0

ÿ

lě0

Nl,Gy
1´lp1 ´ yq2l´2qG.

Proof. By Lemma 3.15, any stable pair pF , sq is determined by supppFq and supppcokerpsqq.
Hence, pairs in PkpX, rCGsq can be thought of as pairs pC,Dq for C P |CG| and D P Crk`G´1s,
cf. Theorem 3.19. Let PkpX, rCGsq // |CG| be the morphism given by pC,Dq

� //C. For fixed
k ě 0, consider the stratification

|CG| “
ğ

nPZ
Tn, where Tn :“ tC P |CG| : epCrk`G´1sq “ nu,

from which we obtain

epPkpX, rCGsqq “
ÿ

n

n ¨ epTnq.

Note that epPic0pCqq may not be constant for C P Tn, as it depends on the singularities of C.
Then, we stratify further

Tn “
ğ

i

Tn,i, where Tn,i :“ tC P Tn : epPic0pCqq “ iu.

By equation (3.12), we have Tn,i “ Tn´ki,i. Then,

epPkpX, rCGsqq ´ epP´kpX, rCGsqq “ k
ÿ

n

ÿ

i

i ¨ epTn,iq “ k
ÿ

i

ieptC P |CG| : epPic0pCqq “ iuq.
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Note that
ř

i ieptC P |CG| : epPic0pCqq “ iuq is independent of k, and so it corresponds to
the claimed constant α. Hence, Lemma 2.5 implies

ÿ

Gě0

ÿ

kě1´G

epPkpX, rCGsqqykqG “
ÿ

Gě0

ÿ

lě0

Nl,Gy
1´lp1 ´ yq2l´2qG,

for Nl,G P Z. □

The previous result yields
ÿ

Gě0

ÿ

lě0

Nl,Gy
´lp1 ´ yq2lqG “

1
ś

ně1p1 ´ qnq20p1 ´ qnyq2p1 ´ qny´1q2
.

In particular, in the limit y // 1 we obtain (for l ‰ 0 the y-terms on the left hand side vanish):
ÿ

Gě0

N0,Gq
G “

1
ś

ně1p1 ´ qnq24
.

Hence, we recover the Yau–Zaslow formula from equation (1.1). This allows us to interpret the
integers N0,G as the number of rational curves (counted with multiplicities) in a linear system
|C| of dimension G and of curves of arithmetic genus G on a K3 surface, c.f. Section 1. In
particular, N0,G ą 0.

Remark 3.18. Consider the morphism

ϕ : Mp0, rCGs, kq // |CG|, F � // supppFq.

Any torsion free sheaf of rank 1 supported on C P |CG| is pure as C does not have embedded
points. Even more, since CG satisfies the condition of minimal intersection, we have seen that
any such sheaf is stable. Hence, the fibres of ϕ are given by ϕ´1pCq “ Pick`G´1pCq » Pic0pCq.
Then, we obtain

epMp0, rCGs, kqq “
ÿ

i

ieptC P |CG| : epPic0pCqq “ iuq.

In particular, by the proofs of Theorem 3.17 and Lemma 2.5, we conclude

epMp0, rCGs, kqq “ N0,G.

3.3. Partial normalisations as local contributions to the BPS invariants of stable
pairs. Consider the formula proved in Theorem 3.17 for a curve CG Ă X of arithmetic genus
G satisfying the condition of minimal intersection:

ÿ

Gě0

ÿ

kě1´G

epPkpX, rCGsqqykqG “
ÿ

Gě0

ÿ

gě0

Ng,Gy
1´gp1 ´ yq2g´2qG.

In the previous subsection, we established that N0,G corresponds (up to multiplicity) to the
number of rational curves in a linear system |C|, where C Ă X is an integral curve of arithmetic
genus G on a K3 surface. In this subsection, we investigate the relationship between the BPS
invariants Ng,G and the integers ngpCq studied in Section 2, for curves C P |CG|, where CG Ă X

is a curve of arithmetic genus G satisfying the condition of minimal intersection.
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Theorem 3.19. Let HilbkCG{ΠG
be the relative Hilbert scheme of k-points associated to the family

CG //ΠG “ |CG|. Then, we have an isomorphism Pk`1´GpX, rCGsq » HilbkCG{ΠG
.

Proof. Consider the morphism

ϕ : pOC
//F |Cq P Pk`1´GpX, |CG|q

� // pHomOC
pF |C ,OCq Ă OCq P HilbkCG{ΠG

.

By Lemma 3.15, ϕ is an isomorphism. □

The above isomorphism yields

(3.13)
ÿ

kě1´G

epHilbk`G´1
CG{ΠG

qyk “
ÿ

gě0

Ng,Gy
1´gp1 ´ yq2g´2,

where CG //ΠG “ |CG| denotes the family of curves associated to the linear system |CG|.

Recall that, in Section 2 we proved the relation

(3.14)
ÿ

kě1´G

epCrk`G´1sqyk “
ÿ

0ďgďG

ngpCqy1´gp1 ´ yq2g´2,

where C is a Gorenstein curve of arithmetic genus G and ngpCq’s are integers counting (modulo
multiplicity) partial normalisations of C.

Via the adjunction formula, any element in the linear system |CG| is Gorenstein. Consider
the stratification of ΠG “ |CG| by the topological type of the curves on it, say ΠG “

Ů

n Tn.
Then, we obtain

epHilbk`G´1
CG{ΠG

q “
ÿ

n

epCrk`G´1s, C P TnqepTnq.

Hence, by the equation (3.14) we have
ÿ

kě1´G

epHilbk`G´1
CG{ΠG

qyk “
ÿ

0ďgďG

ÿ

n

ngpC P TnqepTnqy1´gp1 ´ yq2g´2.

Comparing the previous equation with equation (3.13), we obtain the following result.

Lemma 3.20. Let CG Ă X be a curve of arithmetic genus G satisfying the condition of minimal
intersection. The integers Ng,G from Theorem 3.17 satisfy following relation for 0 ď g ď G

Ng,G “
ÿ

n

ngpC P TnqepTnq,

where ngpC P Tnq correspond to the integers from Theorem 2.6, where C P Tn Ă |CG|. Further-
more, as ngpCq “ 0 for g ą G, we have

Ng,G “ 0

for g ą G.

□
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4. BPS and Gromov–Witten invariants

In this section, we explore the relation between the BPS invariants Ng,G from Section 3.1
and the Gromov-Witten invariants via the MNOP conjecture for Calabi–Yau 3-folds.

Let Y be a Calabi–Yau 3-fold, β P H2pY,Zq be a non-zero curve class and let PkpY, βq be
the moduli space of stable pairs with Euler characteristic k and curve class β. Set

ZP,βpqq “
ÿ

k

p´1qdimpPkpX,βqqepPkpY, βqqqk.

Additionally, let Gh,βpY q be the genus h disconnected Gromov–Witten invariant with no con-
tracted contributions. For a summary on Gromov–Witten theory, see [PT14]. Consider the
generating function

ZGW,βpuq “
ÿ

h

Gh,βpY qu2h´2.

Conjecture 4.1 (MNOP conjecture). In the setting described above, we have

ZP,βp´eiuq “ ZGW,βpuq.

Let X be a K3 surface and consider the Calabi–Yau 3-fold X ˆ C. Let us use the MNOP
conjecture to express the Gromov–Witten invariants of X ˆ C, Gh,βpX ˆ Cq, in terms of the
BPS invariants for K3 surfaces explored in the previous sections.

Theorem 4.2. Let rCGs be a curve class on X with minimal positive intersection with the
polarisation H of X. Let PkpX ˆ C, rCGsq be the moduli space of stable pairs pF , sq on X ˆ C
with discrete invariants χpFq “ k and curve class rFs “ rCGs, whose support is contained in a
fibre of the projection XˆC //C (the condition on the curve class should be understood modulo
the isomorphism X » X ˆ ttu). Then,

PkpX ˆ C, CGq » PkpX,CGq ˆ C.

Proof. Since CG lies on a fibre of the projection X ˆ C //C, the elements in the curve class
rCGs are Gorenstein. Then, by Theorem 3.15, stable pairs pF , sq can be completely specified
by supppFq and supppcokerpsqq. Thus, we have the inclusion

(4.1) PkpX,CGq ˆ C �
� //PkpX ˆ C, CGq, pF , s, t P Cq

� // pF , sq P X ˆ ttu.

Note that the only obstruction for the above morphism to be an isomorphism is that a pair
pF , sq P PkpX ˆ C, CGq might be scheme theoretically supported on a thickening of a fibre, as
this would introduce an extra degree of freedom. However, this case never occurs. Indeed, since
CG satisfies the condition of minimal intersection, F is stable, and so EndpFq » C. If F is
supported on a thickening CˆSpecpCrxs{pxnqq (with C Ă X), we can define the endomorphism
F ¨x // F , which is nilpotent. This contradicts the simplicity of F . □
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By Theorem 3.2, PkpX, rCGsq is smooth of dimension 3´2G`k, so dimpPkpXˆC, rCGsqq`k

is even. Then, for β “ rCGs with CG contained in a fibre of the projection X ˆ C //C, the
previous Theorem yields

ZP,βp´eiuq “
ÿ

k

epPkpX,βqqeiku.

By Theorem 3.17 and Lemma 3.20, we have
ÿ

k

epPkpX,βqqyk “
ÿ

0ďgďG

Ng,GpXqy1´gp1 ´ yq2g´2.

Thus, assuming the MNOP conjecture, we obtain the relation
ÿ

0ďgďG

Ng,GpXqp´1qg´122g´2 cospu{2q2g´2 “
ÿ

hě0

Gh,βpX ˆ Cqu2h´2,

which allows us to express the Gromov-Witten invariants of the Calabi–Yau 3-fold X ˆ C in
terms of the BPS invariants of the K3 surface X. For example, for u “ 0 we obtain

(4.2) G1,βpX ˆ Cq “
ÿ

0ďgďG

Ng,GpXqp´1qg´122g´2.

Note that the invariants Ng,GpXq depend only on β2. Hence, equation (4.2) shows that the
invariants G1,βpX ˆ Cq also depend only on β2. Moreover, these relation also imply that the
Gromov–Witten invariants G1,βpX ˆ Cq are rational numbers and, in general, not integers.

Appendix 1: On the moduli space of (semi)stable sheaves

In this appendix, we recall some basic facts about the moduli space of (semi)stable sheaves
on K3 surfaces following [HL10]. In particular, we outline the construction of the symplectic
structure on the moduli space of stable sheaves.

Let X be a K3 surface. A sheaf E P CohpXq is said to be pure of dimension d if for all
non-trivial coherent subsheaves F Ă E , we have dimpFq “ d. Equivalently, E is pure if all
its associated points have the same dimension. The following characterisation has played an
important role in this thesis.

Proposition 5.1. Let E P CohpXq of codimension c. Then, E is pure if, and only if

codimpExtqpE , ωXqq ě q ` 1

for all q ą c.

Let H be a fixed polarisation of X. With respect to H, we consider two notions of stability:
Gieseker’s and slope stability.

Definition 5.2 (Gieseker stability). For E P CohpXq of dimension d, let P pEq be its Hilbert
polynomial with coefficients αi, and denote by ppEq “ P pEq{αd its reduced Hilbert polynomial.
We say that E is (semi)stable if it is pure and for all proper subsheaves F Ă E we have

ppFqpďq ă ppEq,

where for polynomials fpmq, gpmq we write f ď g if fpmq ď gpmq for m " 0.
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Definition 5.3. Let E P CohpXq of dimension 2. We define the slope of E as

µpEq “
c1pEq ¨H

rkpEq
,

where c1pEq denotes the first Chern class of E and rkpEq its rank. We say that E is µ-(semi)stable
if any torsion subsheaf of E has codimension 2 and

µpFqpďq ă µpEq,

for all subsheaves F Ă E of positive rank. In general, given E P CohpXq of dimension d, we
define µ̂pEq :“

αd´1

αd

3, where αi’s denote the coefficients of the Hilbert polynomial of E .

The two stability conditions are related in the following form.

Lemma 5.4. If E is a pure coherent sheaf of dimension 2, then we have the following chain of
implications

E is µ-stable ùñ E is stable ùñ E is semistable ùñ E is µ-semistable.

Furthermore, if E is µ-semistable with c1pEq ¨H and rkpEq coprime, E is µ-stable.

It is an important fact that stable sheaves are simple.

Proposition 5.5. Let F and G be semistable coherent sheaves of the same dimension. If
ppFq ą ppGq, then HompF ,Gq “ 0. If F is stable and ppFq “ ppGq, a non-trivial morphism
f : F // G is is injective. If G is stable and ppFq “ ppGq, a non-trivial morphism f : F // G
is surjective. Furthermore, if F ,G are stable with P pFq “ P pGq, any non-trivial morphism
f : F // G is an isomorphism.

Corollary 5.6. If E is a stable sheaf, EndpEq is a finite dimensional division algebra over C.
Hence, EndpEq » C.

The moduli space of (semi)stable sheaves. We are interested in parametrising (semi)stable
sheaves with fixed numerical invariants specified by a so called Mukai vector on a polarised K3
surface pX,Hq.

Definition 5.7. Consider the lattice

HevpX,Zq :“ H0pX,Zq ‘H2pX,Zq ‘H4pX,Zq

with the pairing given by
x v, w y :“ v0w2 ´ v1w1 ` v2w0,

where v “ pv0, v1, v2q, w “ pw0, w1, w2q P HevpX,Zq. This lattice is called Mukai lattice.
The Mukai vector of E P CohpXq is defined by

vpEq :“ chpEq
a

TdpXq “ pr, c1,
c21
2

´ c2 ` rq,

where chpEq denotes the Chern character of E , r is its rank, c1 is its first Chern class and c2 is
its second Chern class. We say that the Mukai vector v is primitive if it is not divisible by any
integer m ą 1.

3Note that µpEq “ αdpOXqµ̂pEq ´ αd´1pOXq, so the two slopes do not coincide in general.
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Consider the following moduli functor

Mpvq : pSch {Cqop // Sets,

where for S P Sch {C, we set MpvqpSq to be the set of isomorphism classes of S-flat families of
semistable sheaves on X with Mukai vector v modulo the relation „. We say F „ G if there
exists L P PicpSq with F b p˚L » G. Additionally, for f : S1 //S let Mpfq be be the pull-back
along f ˆ idX . Similarly, we define the open subfunctor of stable sheaves Mspvq Ă Mpvq.
A scheme Mpvq correpresenting the moduli functor Mpvq is called moduli space of semistable
sheaves of Mukai vector v. Gieseker constructed the moduli space Mpvq of stable sheaves on
X as a projective scheme, see [Gie77].

Theorem 5.8. The moduli space of stable sheaves Mspvq is smooth of dimension x v, v y `2.

Proof. The obstruction of deforming E P Mspvq lies in Ext2pE , Eq, see [HL10]. Consider the
trace map

tr : Ext2pE , Eq //H2pX,OXq,

which is an isomorphism for simple sheaves, as it is the dual of H0pX,OXq » C // HompE , Eq.
Via this map, the obstruction to deforming E P Mspvq gives an obstruction to deforming the
line bundle detpEq. On a K3 surface, the obstruction to deforming line bundles vanishes. Hence,
the obstruction to deform E also vanishes.
Furthermore, the Zariski tangent space at E P Mspvq is identified with Ext1pE , Eq, see [HL10].
By Grothendieck-Riemann-Roch, we obtain

´ x v, v y “ χpE , Eq “ dimHompE , Eq ´ dimExt1pE , Eq ` dimExt2pE , Eq.

Via Serre duality, Ext2pE , Eq » HompE , Eq_ » C. Hence, the dimension of the moduli space of
stable sheaves is Mspvq is x v, v y `2. □

Given a Mukai vector v, we say that a polarisation H is v-general if it does not lie in any
wall in the ample cone of X. Details can be found in Section 4.C. in [HL10].

Proposition 5.9. Let E P CohpXq be a semistable sheaf. If its Mukai vector vpEq is primitive
and the polarisation H is v-general, E is stable.

Symplectic structure on the moduli of stable sheaves. We present here an sketch of
the construction of the symplectic structure on the moduli space of stable sheaves, and refer to
[HL10] for details.

Stable sheaves are simple and the tangent space of the moduli space Mpvq at a simple sheaf is
given by TEMpvq » Ext1pE , Eq. Given α P H0pX,ωXq, we define

τpαq : Ext1pE , Eq ˆ Ext1pE , Eq
˝ // Ext2pE , Eq

tr // H2pX,OXq
α // H0pX,ωXq » C,

where ˝ denotes the Yoneda cup product and tr the trace. For holomorphicity, see [Muk88]
pp. 154. The question whether the two form τpαq is non-degenerate is reduced to the following
local result, see [HL10].
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Proposition 5.10 ([HL10]). Let E P M spvq. The 2-form τpαqpEq is non-degenerate if, and only
if multiplication by α induces an isomorphism α˚ : Ext1XpE , Eq // Ext1XpE , E bKXq. Hence, by
picking α as OX

1 // OX » KX , we obtain the non-degeneracy of the symplectic structure.

Proof. Let E‚ // E be a finite locally free resolution of E and let A‚ “ Hom‚pE‚, E‚q, where we
define HomipE‚, E‚q “ ‘kHompEk, Ek`iq with boundary operators dφ “ dE ˝φ´p´1qdegφφ˝dE .
Then,

A‚ b A‚ ˝ // A‚ trE‚ // OX

is a perfect pairing and leads to an isomorphism A‚ //Hom‚pA‚,OXq. Furthermore, for a
section α : OX

//KX , we have the commutative diagram

pA‚ bKXq b A‚ » // Hom‚pA‚,KXq b A‚ev // KX

A‚ b A‚ ˝ //

p1bαqb1

OO

A‚ tr // OX ,

α

OO

where the morphism ev : Hom‚pA‚,KXqbA‚ //KX is given by ϕba � // ϕpaq. This morphisms
of complexes induce morphisms in cohomology that make the following diagram commute

ExtiXpE , E bKXq b ExtjXpE , Eq
» // ExtiXpA‚,KXq b HjpA‚q // H i`jpX,KXq

ExtiXpE , Eq b ExtjXpE , Eq
˝ //

α˚b1

OO

Exti`j
X pE , Eq

tr // H i`jpX,OXq .

α

OO

Note that for i “ j “ 1, τpαqpEq is the map from the lower left corner of the diagram to the
upper right corner.
Since X is a smooth surface and A‚ is a bounded complex of coherent sheaves, Serre duality
ensures that the pairing

Ext2´1pA‚,KXq b H1pX,A‚q //H2pX,KXq
» // K

is a perfect pairing. Hence, following the commutative diagram for the case i “ j “ 1, we
conclude that τpαq is non-degenerate if, and only if α˚ is an isomorphism. □

For closedness of the 2-form see Proposition 10.3.2. in [HL10].

Appendix 2: Euler characteristic of the compactified Jacobian of a curve

In this appendix, we study the topological Euler characteristic of the compactified Jacobian
of a rational curve C, and present explicit calculations for the case of C having only simple
singularities. This appendix follows closely [Bea97].

In Proposition 1.9, we saw that given an integral rational curve C and its minimal unibranch
partial normalisation Ĉ //C, we have

epPic0pCqq “ epPic0pĈqq.
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Hence, we may assume that C is rational unibranch.

Let x P C, δx :“ dimCpOC̃,x{OC,xq and c :“ OC̃p
ř

xp2δxqrxsq, where C̃ denotes the normalisation
of C. Define the finite dimensional algebras Ax :“ OC,x{cx, Ãx :“ OC̃,x{cx, and let Gpδx, Ãxq

be the Grassmannian of codimension δx subspaces of Ãx. Furthermore, let Gx Ă Gpδx, Ãxq be
the closed subvariety consisting of the elements that are Ax-modules. Since any OC,x-module
contains cx, see Lemma 1 in [GPL97], Gx parameterises OC,x-modules Lx, which have codi-
mension δx as submodules of OC̃,x.

Note that OC̃{c is a skyscraper sheaf with fibre Ãx at x, hence
ś

xPΣGx parametrises OC-
modules L, which are submodules of OC̃ with dimpOC̃,x{Lxq “ δx for all x P C. Thus, given

L P
ś

xPΣGx, we have that χpOC̃{Lq “
ř

x δx “ χpOC̃{OCq, which implies that L P Pic0pCq.
Thus, we have a morphism

e :
ź

xPΣ

Gx
// Pic0pCq.

Proposition 6.1 ([Bea97]). The morphism e :
ś

xPΣGx
// Pic0pCq constructed above is a

homeomorphism.

Proof. Via the adjunction formula we have

papBlxCq “ papCq ´
rpr ´ 1q

2
,

where BlxC denotes the blow-up of C at x and r is the multiplicity of the singularity x P C.
Hence, since papC̃q ě 0, by applying the previous equation successively, we get a bound on the
number of singularities, as well as on their multiplicities. Hence,

ś

xPΣGx is compact. Since
both varieties are compact, it is enough to prove that e is a bijection.
For the injectivity, let L,M P

ś

xPΣGx with epLq “ epMq. Then, L » M, which implies that
there exists a rational section s P OC̃ such that M “ sL. By definition of Gx, we also have
that dimpOC̃,x{Lxq “ δx “ dimpOC̃,x{Mxq. Hence,

dimpOC̃,x{Mxq “ dimpOC̃,x{Lxq “ dimpsxOC̃,x{Mxq,

which implies that dimpOC̃,x{sxOC̃,xq is zero, and hence OC̃,x “ sxOC̃,x for all x, and so s must
be constant.
For the surjectivity, let π : C̃ //C be the normalisation and let L P Pic0pCq. Denote by
L̃ “ π˚L{T pπ˚Lq. We claim that degpL̃q ď 0. Consider the exact sequence 4

0 //L // f˚L̃ // τ // 0

where τ a skyscraper sheaf supported on the singular locus of C, such that τx ď δx for all x P C.
Thus, we have χpL̃q ´ χpLq ď χpOC̃q ´ χpOCq, which implies

degpL̃q “ χpL̃q ´ χpOC̃q ď χpLq ´ χpOCq “ 0.

4For the proof of exactness, see Lemma 1 in [GPL97]
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Now, since C̃ is rational, L̃´1 “ Op´degpLqq. Thus, it has a global section whose zero locus is
contained in the singular locus of C. Hence, using the isomorphisms

HomOC
pL,OC̃q » HomOC̃

pπ˚L,OC̃q » HomOC̃
pL̃,OC̃q,

we conclude that there exists a morphism i : L̃ //OC̃ which is bijective outside of Σ because
the associated section has only zeros on Σ. Let nx :“ dimpOC̃,x{ipLxqq for each x P Σ. Then,
we have

ř

xPΣ nx “ dimpOC̃{ipLqq as OC̃{ipLq is supported on Σ with fibres of dimension nx.
Then, since

ř

x δx “ χpOC̃q ´ χpOCq “ g, we have
ÿ

xPΣ

nx “ dimpOC̃{ipLqq “ χpOC̃q ´ χpLq “ g “
ÿ

xPΣ

δx.

□

The variety Gx depends only on the completion of the local ring OC,x. We have seen
that epGxq parametrises the sub-OC,x-modules L of the normalisation ˜OC,x of OC,x satisfy-
ing dimp ˜OC,x{Lq “ dimp ˜OC,x{OC,xq.

Corollary 6.2. Let C be a rational unibranch curve. Then, epPic0pCqq “
ś

xPΣ ϵpxq, where
ϵpxq :“ epGxq and Σ denotes the singular locus of C.

Proof. The previous proposition guarantees that epPic0pCqq “
ś

xPC ϵpxq. Furthermore, note
that if x is a smooth point, then Gx “ teu because by definition Gx parametrises sub-OC,x-
modules L of the normalization OC̃,x of OC,x with dimpOC̃,x{Lxq “ dimpOC̃,x{OC,xq. Hence,
ϵpxq “ 1 if x is a smooth point of C, and the product runs over the singular locus Σ Ă C. □

Proposition 6.3. Let m,n be two coprime integers. If the singularity x P C has as local model
Crrx, yss{pxn ´ ymq, we obtain

ϵpxq “
1

p` q

ˆ

p` q

p

˙

.

Proposition 6.4 ([Bea97]). Let C be a rational curve and let x P C be a simple singularity.
Then, ϵpxq is the number of isomorphism classes of torsion free rank 1 OC,x-modules., and we
have:

ϵpxq “ l ` 1 if x is of type A2l;
ϵpxq “ 1 if x is of type A2l`1;
ϵpxq “ 1 if x is of type D2l (l ě 2);
ϵpxq “ l if x is of type D2l`1 (l ě 2);
ϵpxq “ 5 if x is of type E6;
ϵpxq “ 2 if x is of type E7;
ϵpxq “ 7 if x is of type E8.

Proof. Assume that C has only one singularity with local ring OC,x. Consider the natural
action of Pic0pCq on Pic0pCq, which has finitely many orbits corresponding to the different
isomorphism classes of rank 1 OC,x-modules. Since the orbits of the action are of the form An,
they have Euler characteristic 1, and so ϵpxq “ ϵpPic0pCqq equals the number of these orbits.
Since OC,x is unibranch, its completion is of the form Crrx, yss{pxp ´ yqq with p “ 2 , q “ 2l` 1
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for the type A2l, p “ 3, q “ 4 for the type E6, and p “ 3, q “ 5 for the type E8. Then, the
claimed result follows from Proposition 6.3.
If the singularity of C is of type A2l`1, it has local model defined by x2 ´ y2l “ 0. Locally
around such a singularity, the curve C is the union of two smooth branches with a high order
contact, so by Proposition 1.9 we have ϵpxq “ 1. A Dl singularity is the union of a Al´3 branch
and a transversal smooth branch, hence we have the result by Proposition 1.9. Finally an E7

singularity is the union of an ordinary cusp and its tangent, hence it has ϵpxq “ 2. □

Appendix 3: Proof of Theorem 3.10

Yoshioka proved that if r ą 0, or r “ 0 and CG ample with C2
G “ 2G ´ 2, the moduli space

of µ-semistable sheaves on a K3 surface X, Mpr, rCGs, aqq, and the Hilbert scheme of points
XrG´ras are deformation equivalent, see Theorem 0.2. in [Yos99]. In this appendix, we present
a modification of Yoshioka’s proof of Theorem 0.2. to include the case r “ 0 for CG satisfying
the condition of minimal intersection.

Theorem 7.1 ([KY00]). Let CG Ă X satisfying the condition of minimal intersection. Then,
the moduli space of µ-stable sheaves Mp0, rCGs, aq is deformation equivalent to the Hilbert
scheme of points XrGs. In particular, we have

χtt1pMp0, rCGs, aqq “ χtt1pXrGsq,

where χtt1p´q denotes the Hodge polynomial.

We first consider the following intermediate results.

Theorem 7.2 ([Yos99]). Let v, v1 be Mukai vectors with xv21y “ ´2. Then, for w “ ´Rv1pvq

we have the isomorphism MHpvq » MHpwq, if v1, v satisfy:
(1) ´rv1s0 x v1, v y ´rvs0 ą 0,
(2) rvs0 ą x v, v y {2 ` 1, and
(3) ´ x v1, v y ą x v, v y {2.

Theorem 7.3 ([Yos99]). Let X1, X2 be two K3 surfaces and let v1 “ plr, lη1, a1q P H˚pX1,Zq

and v2 “ plr, lη2, a2q P H˚pX2,Zq be primitive Mukai vectors such that:
(1) r, l ą 0,
(2) r ` η1 and r ` η2 are primitive, and
(3) x v1, v1 y “ x v2, v2 y.
(4) a1 “ a2 mod l

Then, MH1pv1q and MH2pv2q are deformation equivalent.
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Theorem 7.4 ([Yos99]). Let v “ pr, η, aq Mukai vector such that pr, ηq is primitive with r ą 0

and x v, v y ě ´2. Then, for a general H, MHpvq ‰ H and MHpvq is deformation equivalent
to Hilbx v,v y {2`1.

Proof. By Theorem 7.3 and the fact that the Hilbert schemes of n-points of two K3 surfaces
are deformation equivalent, it is enough to assume that PicpXq “ HZ with H2 “ 2par` sq and
a ą s` 1 for x v, v y “ 2s.
Let u “ pa,´H, rq and let v1 “ vpOY q. For F P MHpuq, we have x v1, u y “ ´χpFq “ ´pr`aq.
Since u satisfies the conditions of Theorem 7.2, we have

Mpuq » Mp´Rv1puqq for ´Rv1puq “ ´u´ x v1, u y v1 “ v.

Let now Z be a K3 surface with PicpZq “ H 1Z and H 12 “ 2pa ` sq. Theorem 7.3 yields
MHpuq » MH 1pa,´H 1, 1q. By Theorem 7.2 applied to v1 “ vpOXq, we obtain an isomorphism
MH 1pa,´H 1, 1q » MH 1p1, H 1, aq. Thus, we have

MHpvq » MH 1p1, H 1, aq.

Finally, we note that MH 1p1, H 1, aq » Hilbs`1pXq. Indeed, for F P MH 1p1, H 1, aq we have an
exact sequence

0 //F // detpFq “ OZpH 1q //Q // 0.

Define the morphism F � // pOZ
//Qp´H 1qq. We construct the inverse as follows. Via the

above exact sequence, we identify Fp´H 1q with the ideal sheaf of a closed subscheme W Ă Z.
Then, we define the inverse

W P Hilbs`1pXq
� // IW pH 1q P MH 1p1, H 1, aq.

Note that IW pH 1q is stable as it is a torsion free sheaf of rank 1 on an integral variety. □

Proof of Theorem 7.1. We first reduce to the case r ą 0. Let H be the ample line bundle
from the condition of minimal intersection for CG. After replacing F P Mp0, rCGs, aq by
F bHbn P Mp0, rCrGss, a` n degpCGqq for n big enough, we may assume that the evaluation
map ϕ : H0pX,Fq bOX

//F is surjective for all F P Mp0, rCGs, aq. By Lemma 2.1 in [Yos99],
kerpϕq is µ-stable. Then, we consider the Mukai reflection with respect to vpOXq given by

Φ: Mp0, rCGs, aq //Mpa,´rCGs, 0q, F � // kerpϕq.

The morphism Φ is a proper monomorphism, so it is a closed immersion. Since Mpa,´rCGs, 0q

is irreducible and both moduli spaces have the same dimension, Φ is an isomorphism. Finally,
we conclude by Theorem 7.4. □
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