ENUMERATIVE GEOMETRY OF K3 SURFACES: STABLE PAIR AND BPS

INVARIANTS

A. OVALLE

ABSTRACT. In this thesis, we study the generating function for the stable pair invariants
e(Px(X,[C])) on a polarised K3 surface (X, H), where the curve class is chosen so that C'- H is
minimal among positive intersections with the polarisation, following [KY00]. Additionally, we
explore the enumeration of partial normalisations of Gorenstein curves and use the obtained
results to express the generating function of the stable pair invariants in its BPS form. This
allows us to analyse the contributions of individual curves in the linear system |C| to the
corresponding BPS numbers. Furthermore, we recover as a limit the famous Yau—Zaslow
formula proved by Beauville, and explore the relationship between the BPS invariants for X
and the Gromov-Witten theory of the local K3 surface X x C under the assumption of the
MNOP conjecture.
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2 A. OVALLE

INTRODUCTION

Curve counting has a long history in algebraic geometry. Already in the 19th century, classical
geometers were captivated by the problem of enumerating curves satisfying specified geometric
conditions. A celebrated example is the fact that every smooth cubic surface contains exactly

27 lines, a result that has come to symbolise the beauty of the subject.

In the last few decades, the study of curve counting has undergone a profound transformation.
Modern approaches have given rise to powerful mathematical frameworks, most prominently
Gromov—Witten, Donaldson-Thomas, and Pandharipande-Thomas (or stable pair) invariants,
each offering a distinct perspective on the enumerative geometry of curves. These theories are
not isolated: deep conjectures, many of which have now been proven, reveal surprising equiv-
alences and correspondences between them, see [PT14] for a summary on the topic. Today,
enumerative algebraic geometry is less concerned with computing the raw number of curves
satisfying given conditions, and more with uncovering the intricate web of relations between

different enumerative invariants.

Let (X, H) be a polarised K3 surface. A pair (F,s), where F corresponds to a pure sheaf
of dimension 1 on X and s is a section Ox —°~ F with 0-dimensional cokernel, is called sta-
ble pair. We denote by Py(X,[C]) the moduli space of stable pairs (F,s) with curve class
c1(F) = [C] and Euler characteristic x(F) = k. By choosing C such that C' - H is minimal
among positive intersections with the polarisation, Py (X, [C]) coincides with the moduli space
of coherent systems Syst!(0, [C], k) constructed by Le Potier, [Le 93]. Hence, P.(X,[C]) is a
projective scheme.

In this thesis, we study the generating function for the stable pair invariants e(Py(X,[C]))
on a polarised K3 surface (X, H) introduced in [PT07], where the curve class is chosen so that
C - H is minimal among positive intersections with the polarisation, following [KY00]. Ad-
ditionally, we explore the enumeration of partial normalisations of Gorenstein curves and use
the obtained results to express the generating function of the stable pair invariants in its BPS
form. This allows us to analyse the contributions of individual curves in the linear system |C|
to the corresponding BPS numbers. Furthermore, we recover as a limit the famous Yau—Zaslow
formula proved by Beauville, and explore the relationship between the BPS invariants for X
and the Gromov-Witten theory of the local K3 surface X x C under the assumption of the
MNOP conjecture.

In the first section, we study Beauville’s proof of the Yau—Zaslow formula
D e@)e’ =] —-g),
G=0 n>1

where e(G) denotes the number (up to multiplicity) of rational curves in a linear system of in-
tegral curves of arithmetic genus G' and of dimension G on a K3 surface, [Bea97|. Additionally,
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we explore the relation between curve singularities and the multiplicity of the rational curves.

In the second section, we prove that given an integral Gorenstein curve C of arithmetic genus
G and geometric genus G, we have the following relation

Dle(Cgt1=C = N ng(C)Fy(q),

( G<g<@G

where e(C[i]) denotes the topological Euler characteristic of the Hilbert scheme of points Cl,

and Fy(q) is defined as follows. For a smooth curve ¥ of genus g, we set
Fylq) =Y, e(5D)g" 179,
120
where e(E(i)) denotes the topological Euler characteristic of the i-th symmetric product of X.

Additionally, we show that ng(C') are integers and, if C' is a nodal curve, ny(C) counts precisely
the partial normalisations of C' of arithmetic genus g.

In the third section, under the assumption that [C] is a curve class on a polarised K3 sur-
face (X, H) such that C' - H is minimal among positive intersections with the polarisation and
C? = 2G — 2, we prove the Yau-Zaslow’s type generating function for the total moduli of stable

pairs

>0 D e(Puyi—a(X, [Cal))gHy™ ¢ = 2 —y'?)

+1— ) = — .
G>0d>0 a1 L1 (1= ¢ = q"y)*(1 = gy~ 1)?
The proof of the above formula is based on [KYO00|, however we incorporate modified versions
of some proofs of Yoshioka, see Lemmas 3.3 and 3.4. Furthermore, we use our calculations from

Section 2 to prove the BPS form

SN ePX [CaD)iaC = S S Ny (1 — )% 2C,

G=0k=>1-G G=0g>0
where N, ¢ are integers. This relation allow us to recover the usual Yau-Zaslow formula in the
limit y —1, giving us an interpretation of the BPS invariants Ny . Additionally, we explore
the contributions of curves in the linear system |Cg| to the BPS invariants Ny ¢ and relate
them to the integers ny(C') introduced in Section 2. This allows us to conclude Ny g = 0 for
g>G.

Finally, in the fourth section we explore, under the assumption of the MNOP conjecture, the
relation between the BPS invariants N, ¢ from Section 3 and the Gromov-Witten invariants of
the local K3 surface X x C.

Acknowledgements: [ wish to thank Prof. Dr. Richard Thomas for his generous guid-
ance, his patience and for proposing the key problems and directions that ultimately shaped
this work. I am also grateful to Prof. Dr. Daniel Huybrechts for his valuable questions and

recommendations during the master’s thesis seminar.
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1. THE YAU-ZASLOW FORMULA

Let X be a K3 surface with a linear system |C¢| of integral curves of arithmetic genus G and
of dimension G. Yau and Zaslow conjectured the following generating function, [YZ96|:

(1.1) Dre@e =] —g),

G=0 n=1

where e(G) denotes the number of rational curves in the linear system |Cg/|. In this section, we
study Beauville’s proof of this generating function, [Bea97].

Firstly, we relate the coefficients e(G) with the topological Euler characteristic of the Hilbert
scheme of G-points e(X[¢1) via the Géttsche’s formula.

Theorem 1.1 (|G6t90]). Let X be a smooth projective surface over C or Fy,. Then, we have

) e(x1)0 = [T (1= ")),

G=0 n=1

By the Géttsche’s formula, for a K3 surface we have e(G) = e(X[“1). We aim to show that
e(X[C]) counts (up to multiplicity) rational curves in any G-dimensional linear system |Cgl
of integral curves on X of arithmetic genus G. In order to do this, we relate XI¢! to the
compactified Jacobian of the family of curves Cq —|Cg| associated to the linear system |Cg/,

which is defined as follows.

Definition 1.2. Let X — S be a flat, finitely presented, locally projective morphism of schemes,

whose geometric fibres are integral curves. Then, we define the moduli functor

Picy/g: (Sch /S)% — Sets,
T+={F € Modo,, : F T-flat, F; torsion free of rank 1 for t € T'}/ ~,

where F ~ G if there exist a line bundle £ € Pic(T") and an isomorphism F ® ¢*£L ~ G for
q: X x T—T the canonical projection. Furthermore, after fixing a very ample line bundle
Ox(1), we set Pic’y /g to be the open sub-functor of relative torsion free sheaves of rank 1 with
Hilbert polynomial n.

The étale sheafifications of the above moduli functors, Picx /g ot and Pic’y JEPRELL representable
s &

by S-schemes, see Theorem 8.1. in [AK80]. We call Picgc/s o the compactified Jacobian of the

family X — S, and we drop the subindex "ét" in this document.
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Theorem 1.3. Let Ca—|Cq| be a G-dimensional linear system of integral curves on a K3

surface X of arithmetic genus G. Then, its associated compactified Jacobian Picgc is birationally
equivalent in codimension 1 to the Hilbert scheme of points XIGT,

Proof. Let U < @ be the open subscheme consisting of pairs (Cy, £), where £ is a line
bundle on C; with h%(Cy, £) = 1. This condition ensures that we can assign to each pair (C;, £)
a unique effective Cartier divisor of degree G, say D(Cy, £). On the other hand, let V < XIC]
be the subscheme of divisors contained in exactly one fibre of Co—|C|. We claim that the

morphism
U c Pic¢, —V < X9, (¢, £)—=D(Cy, L)

is well-defined and is an isomorphism.

To verify that D(Cy, £) is not contained in the intersection of two elements of the linear system
|C|, it is enough to show that £Y ® O¢,(C;) does not correspond to an effective divisor. Given
(Cy, L) € U, we have we, = O¢,(Cy) via the adjunction formula. By Serre duality and Riemann-
Roch, we have h°(Cy, LY ® O, (Cy)) = hY(Cy, L) = 0. Hence, LY ® O¢,(C}) is not effective.

Hence, the above morphism is well-defined and it is clearly an isomorphism.

We have that Codim(Pich — U) = 2 because generic effective divisors on a curve C € |Cg| are
not contained in the intersection of two or more curves of the linear system |Cg|. Similarly,
codim(X[¢] — V) > 2,

Finally, by tensoring with a line bundle of degree G, we get an isomorphism @ ~ @ 0

The compactified Jacobian Picg ., 1s an open subscheme of the moduli of simple sheaves on

X, Sply. Then, the symplectic structure constructed in Appendix 1 induces a symplectic
[G]

structure on Picd o+ Moreover, X%l is irreducible symplectic, see [Muk84|. Since Picd ., and
X6 are birational equivalent in codimension 1 and irreducible symplectic, they are deformation

equivalent, see [Huy96]. In particular, e(Picd o) =e(X &). Hence, we have

M ePicd, g% = [[(1—gm

G=0 n=1

Now, we study the contributions of each curve in the family Cg to e(Picg G).

Lemma 1.4. Let C be a curve and let Pic®(C) be its compactified Jacobian. For L € Pic®(C),
we consider its associated partial normalisation w: C' = Spec(End(L))—=C. Then, there exists
an Ocr-module of rank 1, L', such that L ~ 7, L.

Proof. We have that End(L) is an Oc¢-subalgebra of the sheaf of rational functions on C.
Additionally, via Cayley—Hamilton Theorem, End(L) is a finitely generated Oc-module because
L is coherent. Hence, End(L) is contained in O for C the normalisation of C'. Given an O¢-
subalgebra that is contained in O, we can define a partial normalisation of C. Let n’: C'—C
be the partial normalisation corresponding to End(L), then 7, Ocr ~ End(L). Via the above
identification L is a m,Oc-module, so L corresponds to 7, L', where £ is some O¢r-module of
rank 1. O
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Lemma 1.5. Let L € Pic%(C) and let £ € Pic’(C). Denote by n: C'—=C' the partial nor-
malisation of C' associated to End(L). Then, L ® L is isomorphic to L if, and only if 7*L is
trivial.

Proof. There is a L' be a rank 1 Og/-module such that £ = 7, £’. Via the projection formula,
we have L ® L ~ m,.(L' ® 7*L). Hence, if 7*L is trivial, we have L ® L ~ £. On the other
hand, assume that £L® L ~ £. We have

Homo (L, L) ~ Homo, (L, LR L) ~ Endp,. (L) Ro, L ~ 1:0cr @ L ~ mum*L,

which yields Hom (L, £) ~ H%(C',7*L). Let s € H°(C', 7*L)\{0} correspond to id;. As 7*L is
a line bundle of degree 0, div(s) does not have poles or zeros. Thus 1/s € H°(C’, (7*L)")\{0},
and so 7* L is trivial. O

Let us use this Lemma to prove that non-rational curves in the family Cq—|Cq| do not

contribute to e(Picge).

Theorem 1.6. Let C be a proper (reduced) curve over C and let v: C—=C' be its normalisation.
Then, we have the short exact sequence

0— ker(v*) — Pic®(C) > Pic®(C) —=0,

where v* is the pullback. Furthermore, ker(v*) is affine, which implies via the structure theorem
of commutative affine abelian groups over C that ker(v*) ~ Gn@fh @ G?dQ.

Proposition 1.7. Let C' be an integral curve whose normalisation C has genus G = 1. Then,

e(Pic’(C)) = 0.

Proof. Tt is enough to show that for any n > 0, there exists a group of order n acting freely on
Pic’(C). Via Theorem 1.6, we have the exact sequence

0—G— Pic%(C) == Pic®(C)—0,

where C denotes the normalisation of C' and G is a product of additive and multiplicative
groups. In particular, G is an injective object in the category of abelian groups and the above
sequence splits as a sequence of abelian groups. Denote by s the section of 7*.

As C is smooth of genus G, Pic?(C) ~ C%/A and its n-th torsion subgroup is of the form
(Z/n)?G. Hence, via the splitting, we find a subgroup of order n of Pic’(C) for any n > 0,
say (G for G € Pic®(C) < Pic’(C). We consider the action of (G) on Pic’(C) induced by
the tensor product. This action is free. Indeed, let £ € PiiCO(C'), such that g™ ® L ~ L,
and let C' = Spec(End(L)) be the partial normalisation of C associated to £, which fits in
¢ Z ¢ T . Since G"® L = L, we have that 7/*G™ ~ Oc by Lemma 1.5. Hence,
m*G" = 171" G™ ~ Of. Then, applying the section s we obtain G™ = O¢, so the action is
free. This implies that for all n > 0, n divides e(Pic(C)), and so e(Pic’(C)) = 0. O
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Corollary 1.8. Denote by |Cqlrat < |Ca| the subset of rational curves. Then, |Cqlrat is finite
and we have

e(@): Z e(Pic®(Cy)).

te|c‘ra,t

Proof. Assume that |Cg|rat is not finite. Then, it contains a curve, which produces a ruling of
the K3 surface X. This is a contradiction. Furthermore, note that given a surjective morphism
f:Y—Z7 of complex projective varieties such that the topological Euler characteristic of its
fibres is trivial, we have e(Y) = 0. Indeed, this is clear if f is a locally trivial fibration. In the
general case, there exists an stratification of f such that f is a locally trivial fibration on each

stratum, [Ver76]. Consider the morphism p: Picgc —|Cg| restricted to p~1(|Cq| — |Cqlrat)-
Then, by Proposition 1.7, we have e(p~!(|Cq| — |Cglrat)) = 0. O

The previous Corollary yields

e(G)= Y. ePic(Cy),

t€|c|rat

where |Cglrqt © |Cg| denotes the rational locus. Hence, we interpret e(Pic®(Cy)) as the multi-

plicity of the curve Cy. We show now that, if Cy is a nodal curve, e(Pic’(Cy)) = 1, and explore

the relation between the singularities of Cy and the value of e(Pic?(Cy)).

Proposition 1.9. Let C be an integral rational curve. Denote by C —=C its minimal unibranch
partial normalisation. Then, we have e(Pic’(C)) = e(Pic’(C)).

Proof. By Proposition 1.7, the claim holds for non-rational curves. Assume that C' is a rational
curve. Denote its singular locus by %, and its preimage along the normalisation 7: C' —C by
3. To show e(Pic’(C)) = e(Pic’(C)), it is enough to prove that for any n > |3, there exists a
line bundle £,, € Pic’(C) of order n such that £, acts freely on Pic?(C) — my (Pic?(C)).

We have the exact sequence

1— 0 — O —OF /O — 1,

from which follows the isomorphism H(C, (’)g/(’)z’}) = Pic’(C). Then, we aim to construct
corresponding global sections of OE‘/O(*J’ The evaluations Of — @x, C* and (’)(’f:,% @5, C*
produce a surjective homomorphism OF JOE— @5, C*/ @y, C*. For any integer n > |3| we
can find a section s in a neighbourhood of ¥ such that the values s(z;) are different for each
z; € 2, and such that n is minimal with s” being a section of O¢. Let L, be the line bundle
associated to s.

Given F € Pic?(C) —my (Pic?(C)), let 7' : € = Spec(End(F)) —= C be the partial normalisation
associated to F, such that End(F) ~ 7, Ocr. Note that C’ is not unibranch, otherwise we have
a factorisation €’ —C —=C, which contradicts that F ¢ m,(Pic’(C')). Thus, there are two
points in % mapping to the same point in C’, which implies that the section s associated to L,
does not belong to OF, since s takes distinct values on different elements of S by construction.
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As Oc & O¢r, we have a commutative diagram
H'(0%/0p) —— J°(C)
| |
HO(0%/0%,) — J°(C")
from which we conclude that the pullback of £,, to Pic’(C”) is non-trivial. By Lemma 1.5, we
have that £, ® F is not isomorphic to F. O
Corollary 1.10. For a rational nodal curve C, we have e(@(C)) =1.

Proof. The minimal unibranch normalisation of a rational nodal curve is P!. Hence,

e(Pic’(C)) = e(Pic’(P!)) = e({}) = 1.

0

Finally, in Appendix 2 we explore how ¢(Pic’(C)) depends on the singularities of C' for the
case of simple singularities.

2. COUNTING PARTIAL NORMALISATIONS

In this section, we prove that given an integral Gorenstein curve C of arithmetic genus G
and geometric genus G, we have the following relation

ZB(CM)QHI_G = Z ng(C)Fy(q),
i G<g<G
where e(Cm) denotes the topological Euler characteristic of the Hilbert scheme of points Cll,
and F,(q) is defined as follows. For a smooth curve X, of genus g, we set
Fy(q) =Y e(X\)g ™9,
120

where e(Xg(i)) denotes the topological Euler characteristic of the i-th symmetric product of X,.
Additionally, we show that ng(C') are integers and, if C' is a nodal curve, ny(C) counts precisely
the partial normalisations of C of arithmetic genus ¢g. This section grew out of hints and
questions suggested by Prof. Richard Thomas, for which I am very grateful.

Lemma 2.1. Let X, be a smooth curve of genus g. Then, for |q| <1, we obtain

Fylq) =Y e(X§)g™ 79 = ¢ 9(1 - 9)* %
=0
Proof. We show that for any topological space X we have >}, e(X)gt = (1 — q)~¢X). Note
that e(X®) only depends on e(X). By the identity (X 1 {+}))® = X© (X U {+})~D we
have

Dle(XNg = (1-q) ) e((X u{xhD)q"
>0 i
Since e(X u {*}) = e(X) + 1, we may assume e(X) > 0; otherwise, we add sufficiently many

points to X. Moreover, as our claim only depends on e(X), we may reduce to the case where
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X consists of e(X) points. In this situation, e(X®) counts unordered length i tuples of points

(X)) = <z’+e(X) —1>‘

in X, and so

7

Substituting these values gives the desired result. 0

Let C be a Gorenstein curve of arithmetic genus G. Consider the morphism
pi: Cl1 = M(1,i +1 - G) = Pic'(C), D—=1Tp.

For a general divisor D in Cl!l, whose support intersects the singular locus of C, its associated
ideal sheaf Zp is not a line bundle. However, it is a locally free sheaf of rank 1. Hence, ¢; is

well-defined. Clearly, the fibres of the above morphism are @ *(F) = P(H(F)).
Additionally, consider the morphism

(2.1) i M(1,i+1—-G)—M(1,—(i+1-G)), Fr—=Homo,(F,wc) = F" Quc,

which is an isomorphism. Indeed, define ¢: M(1,—(i + 1 — G))—=M(1,i + 1 — G) given by
G—=GY ® we. Note that ¢y;(F) = FVY and ¥;¢(G) = GYV. Hence, we conclude via the

following lemma.

Lemma 2.2. Let C' be an integral Gorenstein curve. Then, any torsion free sheaf of rank 1 is
reflezive, i.e. the natural morphism F—=FVY is an isomorphism.

Proof. See Lemma 1.1. in [Har86]. O

Via Serre duality, we have that
HY(F)Y = Ext'(O¢, F)¥ = Hom(F,wc) = HY(C, Hom(F,we)),

where the last equality follows by the global-local Ext spectral sequence as Ext'(G, O¢) = 0 for
any torsion free sheaf G of rank 1 on a Gorenstein curve, see Lemma 2.3.

Lemma 2.3. Let C' be an integral Gorenstein curve and let G be a torsion free sheaf of rank 1.

Then, Ext'(G,O¢) = 0 for i > 0.
Proof. See Lemma 1.1. in [Har86]. O

Consider following stratification via hY(F):

(2.2) M(1,i+1=G) = | | Sk, where Sy = {F e M(1,i+1—G): h°(F) = k}.

k=0
For F € M(1,i+1—G) we have i + 1 —G = x(F) = h°(F) — h*(F), so the above stratification
can equivalently be described by fixing h'(F). In particular, the stratification (2.2) induces an
stratification on M(1, —(i + 1 — G)) as h®(Home.(F,wc)) = h'(F), which is compatible with
the isomorphism defined in (2.1). This observation is the key step toward the following result.
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Lemma 2.4. Let C be a Gorenstein curve of arithmetic genus G. Then, we have
e(CHEU) — g(clE71) = i ¢(Pic%(C)),
where @(C) ~ M(1,i+ 1 — G) denotes the compactified Jacobian of C.
Proof. We show the following equivalent relation
e(Cly — e(CG=2711) = (i + 1 — G)e(Pic®(C)).

Let ;! o pag_o_i: CPE=271—~ M(1,i + 1 — G), where 1; and pag_2_; are the morphisms
defined above. This morphism has fibres

(" 0 ag-2-4) T (F) = P(H(C, Homog (F,we)))-

2

Hence, the stratification (2.2) yields

e(CPO270) = N B0 (Hom(F, we), F € Sk)e(Sk) = Y. (k= (i + 1= G))e(Sh).
k>0 k>0
Similarly, the morphism ¢;: Cll — M(1,i + 1 — G) and the stratification (2.2) produce
e(CH) = " ke(S).
k=0

Finally, we have an isomorphism

QL

M(1,i+1—G) = Pic!(C) ¥ Pic’(C)

induced by tensoring with any line bundle of degree i. This isomorphism and the previous two

equations yield the desired result. O

Lemma 2.5. Let F(q) = Zx ayqX be a Laurent series with a,—a—_,, = xc, where ¢ is a constant.
Then, there exist coefficients ng such that

F(g) = ), ngg" (1 —¢)*2.
g=0

Furthermore, the coefficients ng are integers if, and only if the coefficients a, are integers.

Proof. For |q| < 1, we have

F(g)= > ayqg X +ao+ D axg¥ = > ax (@ +q %) +c > (=x)g X + ao

x>0 x>0 x>0 x>0
= Y ax (@ + g7 +eq(1 — g) 7 + ao.
x>0

By induction we see that any Laurent polynomial ¢* + ¢~ can be written as linear combination
of the rational functions {Fy}1<g<i+1 with coefficients in Z, where Fy(q) = ¢*79(1 — ¢)?972.
Furthermore, both {¢’+¢~'}; and {F(g)}, are bases of the vector space of Laurent polynomials

1

invariant under the transformation g—=¢~*. This ensures that n, are integers if, and only if

ay are integers. O
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Theorem 2.6. Let C be a Gorenstein curve of arithmetic genus G. Then, there exist integers
ng(C) € Z, such that

(2.3) Z 6(C[i+Gil])qi: Z ng(C)Fy(q),

i>1-G 0<g<G
where Fy(q) :== Y5 e(Xl) gt 19 = ¢1=9(1 — ¢)292 for a smooth curve ¥ of genus g.

Proof. By Lemma 2.4, 7| . e(Cli+G=1) ¢ satisfies the condition of Lemma 2.5. Thus, we
have
Z e(Cl+G=1) gt = Z ng(C)Fy(q).
i=z1-G g=0
Note that >,y <y ngFy(q) has a pole of order N —1 at 0. Since the left hand side does not
have poles of order greater than G — 1 at 0, we conclude that the sum on the right hand side
runs over 0 < g < G. g

In the previous Theorem, we established that ny(C) = 0 for all ¢ > G. Since we aim to
interpret the integers ngy(C) as counting (up to multiplicity) partial normalisations of C' of
arithmetic genus g, we also expect ny(C') = 0 for all g < G, where G denotes the the geometric
genus of C'. This is indeed the case for integral Gorenstein curves.

Theorem 2.7. Let C' be an integral Gorenstein curve of arithmetic genus p,(C) = G and
geometric genus py(C) = G. Then, we have

Z e(Clhg' = Z ng(C)EFy(q).

iz1-G G<g<G

Proof. The central idea is to compare the invariants ny(C') with the corresponding invariants
ng(Co), where Cj denotes a rational curve with the same singularities of C.
Denote by (s, and Csy the smooth and singular locus of C, respectively. We have the
stratification
(2.4) = || el s ol
0<i<i

where we write a divisor D € Clil as D = Dy, 1 Dyg for Dy, and Dy, the base changes of D
along the immersions Cs,,~—C and Cy~—C, respectively.
By smoothness, we have ngl = C’é% Then,

2@t =31 X e(Ciye(Chla’ = 3, e(Cla' (1= g) =,

i=0 =0 0<I<i i=0
where we used >}, e(C§$,3)qj = 2.j>0 e(X(Gj))qj = (1 —q)~%m) for X5 any smooth curve of
arithmetic genus G, see Lemma 2.1. A direct calculation shows that e(Cy,,) = e(X¢g), and so
e(Cé%) = e(Xg)) for any j.
Let Cy be a rational curve with the same singularities as C, such that we obtain C' from Cy after
attaching G handles away from its singular locus. By construction, e(C’ng]) e(Cy g ). Further-

0,sg
more, Cgy, is obtained from Co g, after attaching G handles. A Mayer—Vietories computation
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then gives e(Cy) = €(Co,om) — 2G. Hence, we have
M e(Clyg' = 3 e(Clihg (1 — q) ) = (1 - 2SN e(Cl g (1 — g)e(Coum),

=0 =0 120

L]

We consider an analogue stratification to the one in (2.4) for Cj

ey =Y el g (1 — q)cCoem),

1=0 =0

. And, as before, we obtain

Then, putting the above equations together,
S (g = (1 - Yol
=0 =0
By construction, Cj has arithmetic genus G — G. Then, by Theorem 2.6 we have
@Y eChd = Y ny(Co)Fy(a).
=0 0<g<G-G

Putting everything together and using Theorem 2.6 for C', we obtain

- a
Z =q¢'"9 ) e(C (1—-¢)° Z (Co)Fylg) = >, ny_a(Co)Fy(g).
g=0 =0 : g:é

We conclude that ng(C) = 0 for g < G and ng(C) = ng_G(C’o) for G < g <G. O

We now present two examples to illustrate that the numbers n,(C) depend on the singularities
of C, and that while in some cases n4(C) precisely counts partial normalisations of C, in general
this holds only up to a multiplicity that depends on the singularities of C.

Example 2.8. Let C' be a rational curve with one nodal singularity. Then, no(C) = 1 and
nl(C) =1.

Proof. We have

Z e(C¥Ng* = ngFy(q) + n1.
k>0

Then, ny = ap = e(Cl%) = 1 and ng = ¢ = ¢(Pic’(C)) = 1. .

Example 2.9. Let C be a rational curve with one cuspidal singularity. Then, ng(C) = 2 and
nl(C) =1.

Proof. As in the previous example, we have n; = e(Cl%) = 1 and ng = e(Pic’(C)). Since

cuspidal singularities are of type Ay, we have e(Pic’(C)) = 2, see Appendix 2. O

Note that in Example 2.8, the numbers n,(C) explicitly count partial normalisations of C.
We now show that this holds for any nodal curve.

Lemma 2.10. Let the multiplicative group Gy, act on a scheme of finite type. Then, we have
e(X) = e(X®m). In particular, if the action has no fized points, e(X) = 0.

Proof. See Corollary 2 in [Bia73|. O
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Theorem 2.11 (|[KST11]). Let C be a nodal curve of arithmetic genus G and geometric genus
G. In particular, C has G — G nodes. Then,

ity = 3 (7 )ecct

o<k N 7

where Cg—; denotes any partial normalisation of C' at j nodes and Cg—j sm denotes its smooth
locus.

Proof. Let ¥ < U4 be a subset of the singular locus of C'. Denote by 7y.: Uz, —= C the partial
normalisation of C' at 3 (desingularisation over ) and by Cs; 4, its smooth locus.
By smoothness, cl — ol

3,sm 5.6m for all i. Define ix: C(Ek;,LZ‘)%C[k] in the following form.

Given an effective Cartier divisor Z = Zy U Zy < Cyx, g, where Z1 := Z N (Cx om —7151(2)) and
Zy == 7 n 715 (2), we pushforward Z; along the isomorphism C' — ¥ ~ Cyx, — 75" () induced
by the partial normalisation 7y : Cy, —C.

Let us now describe how to attach the contribution from Zs. Let p € ¥ < C be a node, then the
local model of C' around p is given by C[[z, y]]/(zy) and its normalisation has two local branches
corresponding to the x- and y-axes. If Zs has multiplicities a and b along the  and y branches
respectively. we push Zs down around p to the length a + b + 1 subscheme with local ideal
(z2F1,4P+1) (i.e. we thicken p further by the corresponding multiplicities of Z5 on 2 and 3). We
repeat this process with all the nodes p € 3. Note that if Zo = ¢, we attach each node p e ¥
as a length 1 contribution. This construction yields a closed immersion iy : C’gf;llzn ——elLi}
Note that each ix, produces a closed subschemes whose support contains ¥ and does not contain
Csg — 2. Thus, the images of the morphisms ¢y, are disjoint and we obtain

|_| c* == — Ak

3,sm
3NcCsy

The divisors that do not intersect the singular locus C4 are obtained via the above construction
applied to X = . On the other hand, for ¥ # ¢, the divisors obtained via the above described
pushforward along iy, are not Cartier. Thus, the construction misses precisely those points that
correspond to Cartier divisors on C' and that intersect the singular locus Cs,. However, we
claim that those divisors do not contribute to the Euler characteristic of C1#.

Let p; € Csy be a node, so the local model of C' around p; is given by C[[z, y]]/(zy). The effective
Cartier divisors of C' that meet Cs, have the form (h;(x), gi(y)) around p;, where h;(z) € C[[x]]*
and g;(y) € C[[y]]* and h;(0) = g;(0). Consider the C*-action on the set of effective Cartier
divisors that meet the singular locus C, given by

t- (hi(2), 9i(y)) 0y = (hiltz), 9i(y)) Csy -

At the level of formal series, this action has as fixed points the elements with constant h;(z).
Hence, at the level of Cartier divisors, it has no fixed points. Then, via Lemma 2.10, we have

of ¢
e(CH — |y, CF ) =0,
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Thus, the stratification defined previously yields

i G-G e
ety 3 3 k- 3 (9] )t D,
0<j<k TcCyy 0<j<k J
1%l=j

where Cq_j s denotes the smooth locus of any partial normalisation Cg_; of C' at j nodes. [J

Corollary 2.12. Let C' be a nodal curve of arithmetic genus G and geometric genus G. In
particular, C has G — G nodes. Then,

G-G
is the number of partial normalisations of C at subsets ¥ < Cyq of cardinality G — 1.

Proof. By comparing coefficients on both sides of equation (2.3), we conclude that the integers
ng(C') satisfy the following relation (this result does not require C nodal):
(2.5) ne-k(C) =e(CH)— 31 ny(@)e(xTI),
G—k+1<i<G
where X; denotes any smooth curve of genus i. From this relation follows ng(C) = 1. Assume
that the claimed result holds for ¢ > G — k. By Theorem 2.11, we have
()= 3 (G ; G>e(c§§;§m),
0<j<k
where Cg_j ¢m denotes the smooth locus of any partial normalisation Cg_; of C' at j nodes.
Note that e(C(k_j) ) = e(X(k_j)), where Xg_; denotes any smooth curve of genus G — j.

G—j,sm G—j
Then, the induction hypothesis applied to (2.5) yields

ng—k(C) = (G ; G) (X)) = (G ; G)-

3. STABLE PAIR AND BPS INVARIANTS

In this section, we present the BPS invariants for the total moduli space of stable pairs on
a K3 surface following the approach by Kawai and Yoshioka, [KY00|]. The setting of this sec-
tion is the following. Let (X, H) be a polarised K3 surface and let C¢ < X be a curve with
C% = 2G — 2 such that C - H = min{L - H > 0 : £ € Pic(X)}. We call the later condition

condition of minimal intersection.

Under the above assumptions, in Subsection 3.1 we prove following Yau—Zaslow’s type gen-
erating function for the total moduli of stable pairs

12 _ y1/2y-2
3.1 e(Pii1—a(X,[Ca])gC 1yt t1=C = v Y :
( ) GZZOC;) ( d+1 G( [ G]))q Y q Hn>1(1 _ qn)20(1 — qny)2(1 _ q"y_1)2

where e(Py1-¢(X,[Cg])) denotes the topological Euler characteristic of the moduli space of

stable pairs of curve class [C¢] and Euler characteristic d+ 1 — G. The concept of stable pair is
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introduced later in this section. The subsection 3.1 is based on [KY00], however we incorporate
modified versions of some proofs of Yoshioka, see Lemmas 3.3 and 3.4. These modifications are
essential for extending the results to our setting.

In Subsection 3.2, we use our calculations from Section 2 to prove the relation

Y eBu(X [Ca))yFa® = Y] D] Ny 9(1 — 9)* 4%,

G=0k=21-G G=0g=0
where Ny ¢ are integers. This relation, together with equation (3.1), allow us to recover the
usual Yau-Zaslow’s formula from equation (1.1) in the limit y—1. This gives us an interpre-
tation of the BPS invariants Ny .

Finally, in Subsection 3.3 we explore the contributions of curves in the linear system |Cg|
to the BPS invariants N, ¢ and relate them to the integers ny(C') introduced in Section 2. This
allows us to conclude Ny g = 0 for g > G.

3.1. The generating function for stable pairs. Let (X, H) be a polarised K3 surface and
let C¢ © X be a curve with C3 = 2G — 2 satisfying the condition of minimal intersection
introduced at the beginning of the section.

Remark 3.1. Let C' © X be a curve satisfying the condition of minimal intersection. Then,
any element in |C| is integral. Furthermore, C' is primitive. Indeed, assume there exists non-
integral D € |C|, then we can write D = ), a;D; for D; integral. Since D is effective, we obtain

a contradiction to the condition of minimal intersection.

We denote by M(r,[C],a) the moduli space of p-(semi)stable sheaves on X with respect
to the fixed polarisation H, of rank r, first Chern class [C] and Euler characteristic a, see
Appendix 1. In this section, we assume that all the spaces moduli M(r,[C],a) are moduli of
pu-stable sheaves. By the condition of minimal intersection on C, for a general polarisation H,
M(r,[C],a) is a moduli of p-stable sheaves, see Theorem 4.C.3. in [HL10].

Given a Mukai vector v, consider the moduli functor
Syst" (v)(S) = {¢*L—F : F € M(v)(S), L locally free sheaf of rank n on S},

where ¢g: X x §—=.5 denotes the projection. This corresponds to the coarse moduli space of
coherent systems introduced by Le Potier, see [Le 93], under a choice of stability condition for
which a coherent system ¢*L£— F is stable if, and only if F is stable. Note that for S = C, a
choice ¢*£—F corresponds to a choice of subspace U = HY(F) with dim(U) = n.

Theorem 3.2 ([KY00]). If C c X satisfies the condition of minimal intersection, Syst™(r, [C], a)
is a smooth scheme of dimension (v,v) + 2 —n(n + (v(Ox),v)).

Proof. 1t was proved in [He98| that the tangent space at A := (U® Ox —F) € Syst"(r, [C], a)
is given by Ext! (A, A) and obstructions of infinitesimal liftings lie in the kernel of the following
morphism

7: Bat?(A, A) — Ext?(F, F) %> H*(X,Ox).
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So, we need to show that 7 is injective. In [He98| was also shown that
Ext?(A, A) ~ Ext?(A, F).
Moreover, there is an exact sequence
0—Ext°(A, A) — Hom(F, F) — Hom(U ® Ox, F)/V
—Rat' (A, A) — Ext}(F, F)— Ext! (U ® Ox, F)
—Eat?(A, A) — Ext*(F, F) — Ext}(U ® Ox, F) = 0,

where V' = im(Hom(U x Ox,U x Ox)— Hom(U x Ox,F)). Then, the Serre dual of 7 is
given by the composition

(3.2) H(X,0x)— Hom(F, F) “=Hom(F,U ® Ox —F).
We are done if we show that Hom(F,U ® Ox — F) ~ C.

Let

(3.3) 0—0x @ Ext!(F,0x)" —G—=F—0

be the universal extension, i.e. the extension class corresponding to the identity element in
End(Ext!(F, Ox)) ~ Ext!(F, Ox ® Ext' (F,0x)").

By (3.2), we have dim Hom(F,U ® Ox —F) > 1. Hence, via the exact sequence (3.3) it is
sufficient to show that dimHom(G,U ® Ox —F) = 1 and the natural morphism

Hom(F,U ® Ox —F) —Hom(G,U ® Ox —F)
is injective.
By Theorem 2.5. in [Yos99] and Serre duality, Ext'(G,Ox) = H'(X,G)¥ = 0. By stabil-
ity of G we have Hom(G, Ox) = 0. Furthermore, we have the exact sequence
Hom(G,U ® Ox) — Hom(G, F) —Hom(G,U @ Ox — F) — Ext(G,U ® Ox),
hence Hom(G, F) ~ Hom(G,U ® Ox — F). Note that Hom(G, F) fits in the exact sequence
Hom(G, 0%') — Hom(G,G) — Hom(G, F) — Ext' (G, 0%"),
where i := dim Ext! (F, Ox). Then, we obtain dim Hom(G,U ® Ox —F) = 1 by simplicity of
g.

Consider the exact sequence
Ext™ (Ox®i,U @ Ox — F) —=Hom(F,U ® Ox —F) —Hom(G,U ® Ox — F).
We show that Ext ! (Ox®i,U ® Ox —F) = 0. Note that
Eat™ 1 (Ox®i, U ® Ox —F) = ker(Hom(OY', U ® Ox) — Hom(OY, F)).

Since U is a subspace of Hom(Ox, F), we obtain the claimed result. O
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In order to construct the generating function of the total moduli space of stable pairs, we
need some intermediate results. Following two lemmas have been proved by Yoshioka under
the assumption Pic(X) = CgZ, cf. [Yos99]. Here, we present different proofs of the statements

under a weaker assumption, i.e. Cg satisfying the minimal intersection condition.

Lemma 3.3. Let Cqg < X be a curve of arithmetic genus G satisfying the condition of minimal
intersection. Given a p-stable sheaf € with r = rk(€) = 1,d = deg(€) = Cq-H and a non-zero
morphism ¢: Ox —&, we have that ¢ is injective and coker(¢) is p-semistable.

In this section we assumed that p-semistable sheaves are p-stable, hence coker(¢) is u-stable.

Proof. Let us first consider the case r > 1. Then, ¢ is not surjective. By stability of £, we have
0 < deg(im(¢))/rk(im(¢)) < d/r. If deg(im(¢)) > 0, by minimality of d we have d < deg(im(¢))
and so dr < deg(im(¢))r < drk(im(¢)). Then, r < rk(im(¢)), which is a contradiction. Then,
w(Ox/ker(¢)) = n(Ox), which contradicts the stability of Ox unless ¢ is injective.

Thus, we have the short exact sequence

(3.4) 0—>0x % E—>F = coker(¢) —=0.
In particular, deg(F) = d and rk(F) = r — 1. Assume that F is not u-semistable, then there

exists a quotient sheaf of F, say F —G such that deg(G)/rk(G) < d/(r —1). Since & surjects
onto F, then G is also a quotient sheaf of £. By stability of £ and by minimality of of d we get

d(r—1) < deg(G)(r — 1) < drk(G),

and so r — 1 < rk(G), which contradicts that G is a quotient sheaf of F.

For the case r = 1, ¢: Ox —=¢& is injective, otherwise its kernel destabilises Ox, and coker(¢)
has rank 0. We have that supp(coker(¢)) = C is a curve. Since deg(coker(¢)) = d and we
assumed d to be minimal among positive intersections, C' must be integral. Finally, as coker(¢)

is a torsion free sheaf of rank 1 on C' and C' is integral, it is u-stable. O

Lemma 3.4. Let C' be a curve satisfying the condition of minimal intersection. Then, if F is
a p-stable sheaf with d = deg(F) = C - H and rank r = vk(F) = 1, any non-trivial extension

0—0O0x—E—F—0
is p-semistable.

Proof. Assume that £ is not p-semistable. Then, there exists stable subsheaf G =& of degree
dg and rank rg such that r¢ < 1k(€) =r+1and 0 < d/(r +1) < dg/rg. Then, d < dg by
minimality. Moreover, the composition ¢: G —& — F is non-trivial, and so the stability of
F yields dg/rg < d/r. In particular, r < rg < r + 1, so we have rg = r. Hence, by minimality
of d and the relation dg/rg < d/r, we obtain dg = d. Since F and G are p-stable of same slope,
¢ is an isomorphism in codimension 1.

Denote the extension class by e € Ext!(F,Ox). Then, ¢ induces a morphism

®: Ext'(F,Ox)— Ext'(G, F),

sending e—0. We have Ext!(F/G,Ox) = 0, and so ® is injective. Then, e = 0, which is a
contradiction. O
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Remark 3.5. We define the following stratification

M(r,[Cla) = | | M(r[C],a

i=r+a

where M(r, [C],a); == {F € M(r,[C],a) : h°(F) = i}. Analogously, we have the stratification

Syst!(r |_| Syst!(r ,a)i,

i=r+a

where Syst!(r, [C],a); == {(F,s € H(F)) : F € M(r,[C],a),h°(F) = i}. Given a sheaf
F e M(r,[C],a) with i < r + a, the condition h°(F) = i does never hold because via stability
h%(F) = hom(F,Ox) = 0.

Lemmas 3.3 and 3.4 allow us to prove following central result.

Theorem 3.6. Let C satisfy the condition of minimal intersection and let r = 1, v = (r,[C], a)
and w = (r —1,[C],a — 1). Any element (s: Ox —=&) € Syst*(v) is injective and coker(s) is
a p-stable sheaf. Hence, we have a morphism

¢v: Syst!(v) — M(w), s+ coker(s).
Moreover, by setting m =1 — (r + a), we obtain following diagram for i = r + a:

Syst! (v

/\

where the forgetful morphism p, is an étale locally trivial P'-bundle and q, is an étale locally
trivial P -bundle.

—1

Proof. The injectivity of any s: Ox —=& € Syst!(v) and the stability of coker(s) follow from
Lemma 3.3. The additivity of Mukai vectors on short exact sequences ensures v(coker(s)) = w.
Since h!(X) = 0, we have h%(coker(f)) = h%(£) — h%(Ox) =i — 1.

For the rest of the claim it is enough to check the fibres of the morphisms p, and ¢,. Clearly,
;1 (€) = P(H(X,E)). Additionally, Lemma 3.4 yields ¢, '(F) ~ P(Ext'(F,Ox)). Finally,
ext!(F,0x) = ext!(Ox,F) = b (F) = m + i, as x(F) = x() — x(Ox) = r + a — 2, and
h%(F) = hom(F,Ox) = 0 is clear for rank 0, and follows for positive rank by stability of 7. [

Definition 3.7. Given a smooth complex projective variety V', we define its Hodge polynomial
by
dim(V)
(V)= D) (P
P,q=0
where h?7(V') denotes the (p, ¢)-Hodge number of V.
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Lemma 3.8. Let m: V—W be an étale locally trivial P™-bundle with V, W smooth, such that
V' is projective over W. Then,

Xt (V) = [n+ 1xe e (W),

where [n] :== (t;;,)i;l.
Additionally, given a decomposition V = |J; Vi into mutually disjoint locally closed subsets, we
have
Xt (V) = ZXt,t’(V;)-
Proof. See Lemma 5.163 in [KY00]. O

Following result is the key part of Kawai—Yoshioka’s construction of the claimed closed form.

Theorem 3.9 (|[KY00]). Let Cg < X be a curve of arithmetic genus G satisfying the condition
of minimal intersection. Then, for r + a = 0, we have the decomposition

Xew (Syst! (1, [Cel ) = 3 () DM 4 a4 2k]x,0 (M(r + K, [Cel, a + k).
k=0
Note that the sum on the right hand side is not infinite as M(r + k,[Cgl,a + k) = & for
G—(r+k)(a+k)<DO.

Proof. Via Lemma 3.6, we have the diagram:
(3.5)

Syst'(r + 1,[Cgl,a + Dryayiyi ;
/ \
M(T + 1, [CG]7 a+ 1)r+a+1+i M(T, [CG]a a)r+a+z’

where p is a P"+%+ étale bundle and ¢ is a P*~! étale bundle.
This diagram and Lemma 3.8 yield

Z[i]Xt,t’ (M(Tv [CG]7 a)r-i—a-i—i) = Z Xt,t’(SyStl(r + 17 [CG], a+ 1)r+a+1+i)

>0 i>0
= Z[T +a+1+ilxer(M(r+1,[Calia+ 1)riat144)
=0
= Z[T +a+2+ i]Xt,t’(M(T +1, [CG]v a+ 1)7"+a+2+i)'
=0
We have (tt')"t%"2[i] + [r + a + 2] = [r + a + 2 + i], hence via the stratification of M (v) with
v=(r+1,[Cgl,a+ 1), we can write

(tt)rret Z[i]Xt,t'(M(U)r+a+2+z’) = Z([T +a+2+i]—[r+a+2])xer (MO)rsar2+i)
i>0 i>0

= Z[T +a+2+ilxer (M)rtar2+i) — [r +a + 2]xer (M(v)).

=0
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Putting the last two equations together we obtain

Z[i]Xt,t’(M(rv [CG]7 a)T+a+i) = Z[T +a+2+ i]Xt,t’(M (v)r+a+2+i)

120 120

= ()" [ix e (M) rarari) + [r+ a+ 2)xee (M(v)),

120

where v = (r + 1,[Cg],a + 1). Doing the above calculation inductively, we have the following
relation
(3.6)

D lilxee (M(r,[CG), @)rrari) = D () Zim1 a2 4 g 2k] Xt (M(r + k,[Cql,a + k)).

120 k=1

The additivity of the Hodge polynomial and Lemma 3.8 applied to diagram (3.5) imply

Xt,t’(SyStl(r7 [CG]v (1)) = Z [’l“ +a+ i]Xt,t’ (M(T‘, [CG], a)r+a+i)-

120

We note that (¢t')"*[i] + [r + a] = [r + a + i]. Hence, as before, we can write

Xt (Syst' (r, [Ca @) = (#) Y [i]xt,0 (M(r. [Ca), )rtasi) + [ + alM(r, [Ca), a).

=0

Via equation (3.6), we obtain

Xew (Syst' (r, [Cal,a)) = > ()T 4 g+ 2k]xy v (M(r + K, [Cgl,a + k),
k=0

where we used that >, (r+a+2j) =(r+a+k—1k O

Theorem 3.10. Let Co < X be a curve satisfying the condition of minimal intersection. Then,
M(r,[Cql, a) is deformation equivalent to X'G=79) . In particular, we have

Xt (M(r,[Cal,a)) = Xtt'(X[G_m])-

Proof. This result has been proved by Yoshioka for the case r > 0, see Theorem 7.4. A modifi-
cation of Yoshioka’s proof for the case r = 0 can be found in Theorem 7.1. 0

Given a section s: Ox —F, we obtain the distinguished triangle
Ox > F—[0Ox —F] =C(s),
which yields the exact sequence
(3.7) 0—=Hom(C(s),Ox)—=Hom(F,Ox)—=Hom(Ox,0x) —= Ext'(C(s),0x)— . ...

This allows us to define the following morphism.
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Theorem 3.11 (|[KY00]). Let C < X satisfy the condition of minimal intersection. Then, we
have an isomorphism

¢: Syst}(0,[C],a) = Syst!(1,[C],1 —a), (Ox == F)r—(0Ox > Ext'(C(s), Ox)).
Furthermore, this induces following isomorphism at the level of the stratification
Syst' (0, [C], @)asi = Syst' (1,[C],1 — a)11s.
Proof. See Proposition 5.128 in [KY00|. O

Corollary 3.12. Under the conditions of the previous theorem, we have the following diagram

Systl(O7 [C],a)ati ~ Systl(l7 [C],1—a)14i

e T

M(0,[C], a)ar M(L[C], 1 —a)14i
where the forgetful morphisms p1 and py are étale locally trivial P, respectively P T -bundles.

Theorem 3.13 (|[KY00]). Assume that Cq < X satisfies the condition of minimal intersection
for all G = 0. Then, for |q| < |y| <1 holds
DD xaw (Syst! (0, [Cal,d + 1 = G))(tt) = Cg Ty =6
G=0d=0
B -1
q(¥) oo (@/y)oo ()™ )oo (1Y q)en (E(E) T @)oo ()5 (¢ q) o0

where (C)eo = [ [,,50(1 = Cq"). In particular, by setting t =t' = 1, we obtain:

(3.8)
/2 —1/2)—2
S St C d+1—-@G qul d+1-G _ (y Yy :
;Oc;) ' el ) Y qIl=1(1—¢")2°(1 — q"y)*(1 — q"y=')?

where e(—) denotes the topological Euler characteristic.

Proof. Let us first assume a = 0. Apply Theorem 3.9 for the case r = 0. Then,

(3.9)
D Xew (Syst'(0,[Cal, @)y () g = Y7 () DR a + 2k]xy v (MK, [Cal, a + k))y® (i) "
h=0, h=0,
a=0 a=0,

k=0

= > (#)9IV i + flxee (M, [Cal, )y () g

h=0,

=1,

1=0

_ Z (tt/)(j—l)i[i +j]Xt’t/(X[Cé/2—ij+1])yj—i(tt/)l—hqh—l
h=0,
JZi,
>0

!
S ODN O T3l D (X)),

j=11=0
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where we used Theorem 3.10 in the third equality. For a > 0, Corollary 3.12 yields
[0 (M(0,[Cal. —a)i) = Y [a + i+ xew (M(L [Cel, 1+ a)arist)-
i=1 i1

By equation (3.6) and performing a similar calculation as in equation (3.9), for a > 0, we obtain
(3.10)

—a — — tt' =iy 1,00 ,10 n -n_ n
D X (Syst! (0, [Cal, =)y~ (#)! "t = = (3 23 () T [i+4ly’ ) Q) xew (X () ).
= 7 =1 n

Combining Equations (3.9) and (3.10), we have

- — tt’ —i[s 1,,J—1% 1] n —n_n
D Xew (Syst! (0, [Cal, )y (') ~"q" " = ;(E(tt’) i+ 719" 'a7) (Y X (X (88) "),
h=0, =0, n
a€’Z 7>0

The following identity has been proved in [Hic88|:
tt' tt’

(2 ()7l + 1y gV = D Dty y ™ = (ty) "y )Y
7 >0, q i>0,
7>0 7>0

_ (@3 (t) (9
2(¥)o0(@/Y)oo ((E8'y) ™ )oo ('Y q) o0
where (()o = [ [,,50(1 — ¢¢"). Finally, it has been proved that, see [Che96] and [GS93],

, [n] nN—n,n _ 1
;Xtt (X)) ™ () ) () ' D)oo (@) (E 1 q) o0 ()

0

Now, let us explore the relation between the moduli space of coherent systems Systl(O, C,a)
and the moduli space of stable pairs.

Definition 3.14 (Stable pairs). A pair (F,s) consisting of a sheaf 7 on X supported in
dimension 1 together with a section s € HY(X, F) is called stable pair if F is a pure sheaf and
coker(s: Ox —F) has dimension 0.

Given by a curve i: C =X and a divisor D c C, we obtain the typical example of an stable
pair via (ixOc(D), sp), where sp is the canonical section associated to D.

Lemma 3.15 ([PT10]). An stable pair supported on a Gorenstein curve C' is equivalent to a
0-dimension subscheme of C. Under this equivalence, the pair

0—0c 32 F—-=Q—0
1s associated to the subscheme

Oc ~ Ext’ (O, Oc) —Ext' (Q,0c) —0

Proof. The key point is the following equivalence: given a generically locally trivial sheaf F on
a Gorenstein curve C, F is pure if, and only if £zt (F,O¢) = 0 for i > 0, see Appendix B in
[PT10].



23

Let 0—~0O¢ —°> F—=Q—=0 be a stable pair. Then, by purity of F, we have the exact
sequence
0—FY —0Oc—Ext'(Q,O¢) —0.

Hence, FV is an ideal sheaf and Ext!(Q, O¢) is isomorphic to the structure sheaf of a subscheme
of C'1.
On the other hand, let D € C be a divisor. Then, by purity of O¢, we obtain the exact sequence

0—0O¢—1}—=Ext (Op, Oc) —0,

where Zp is the ideal sheaf associated to D. Moreover, £xt'(Zp,O¢) = 0 for i > 0. Thus,
Z; = RHom(Zp,O¢), and we note that

R”Hom(l’B, OD) = ID.

This implies Sxti(IB, Oc¢) = 0 for i > 0, and so Zp is pure. Hence, Oc—Z)) determines an
stable pair. O

Given a curve class [C] € Ha(X,Z), we denote by P,(X,[C]) the moduli space of stable
pairs (F,s) with Euler characteristic x(F) = a and ¢;(F) = [C]. The following lemma relates
the moduli space of coherent systems Syst!(0,[C],a) and the moduli space of stable pairs
PQ(X7 [C]).

Lemma 3.16. Let C' < X be a curve satisfying the condition of minimal intersection. Then,
elements (F,s) € Syst!(0,[C],a) are equivalent to stable pairs on X with support in |C|. In
particular, Syst*(0, [C],a) = P.(X,[C]).

Proof. Let (F, s) be a stable pair on X such that supp(F) € |C|. Since C satisfies the condition
of minimal intersection, supp(F) is integral. We have that coker(Ox —2- F) has dimension 0,
so F is generically isomorphic to Ogypp(F). In particular, F has rank 1 on its support. Finally,
pure sheaves of rank 1 on integral curves are p-stable.

Let now (F,s e H°(F)) € Syst!(0,[C],a). We only need to verify that coker(s) has dimension
0. As F is supported on a curve, coker(s) is supported on dimension 1 or 0. Assume that
coker(s) is supported in dimension 1, then it is supported on the whole C' by integrality, and it
has positive rank on C. As ¢;(F) = [C], we have F has rank 1 on C' 2. Then, since coker(s) has
positive rank on C' and it is a quotient sheaf of F, coker(s) has rank 1 on C. This contradicts
the stability of F. g

The previous lemma allows us to write the result of Theorem 3.13 in the following form.
Given a family of curves {Cg < X}gso of arithmetic genus G satisfying the condition of

minimal intersection, we have

Z Z (P (X, [Cq))) G-1,d+1-G (y_1/2 _ yl/z)—z
e d -G ) G q y — . .

INote that Q may not be isomorphic to the structure sheaf of a subscheme of C.
2As F is torsion free on C and C is integral, ¢1(F) = r[C] with r = lengthy, , (Fy) for n the generic point
of C
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3.2. Recovering the Yau—Zaslow formula. In this subsection, we show the following rela-
tion for a family of curves {Ce < X}g=o satisfying the condition of minimal intersection and
such that C% =2G — 2

(3'11) Z Z G(Pk(X, [CG]))yqu = Z Z Nl,Gylil(l _ y)2172qG'

G=20k=1-G G=01=0

We present here an approach that makes evident the contributions of elements of the linear
system |Cg/| to the BPS invariants N; ¢.

Recall that we proved in Lemma 2.4 that given a Gorenstein curve C' of arithmetic genus
G, we have

(3.12) e(C+G=1y _ o(lR+G=1D) — k. e(PicY(C)),
where Pic?(C) denotes the compactified Jacobian of C.

Theorem 3.17. Let Cqg < X be a curve of arithmetic genus G satisfying the condition of
minimal intersection. Then, we have:

e(Pu(X, [Cql)) — e(P_x(X, [Cal)) = k- o,
where o is a constant. In particular, there exist N) g € Z such that

Z Z G(Pk(X, [CG]))yqu = Z Z Nl,Gylil(l _ y)2172qG.

G=0k=1-G G=01=0

Proof. By Lemma 3.15, any stable pair (F,s) is determined by supp(F) and supp(coker(s)).
Hence, pairs in Py (X,[Cg]) can be thought of as pairs (C, D) for C € |Cg| and D e CF+G=11,
cf. Theorem 3.19. Let Py (X, [Cq]) —|Cq| be the morphism given by (C, D)+—C'. For fixed
k = 0, consider the stratification

ICal = | | Tn, where T, := {C € |Cq| : e(CFFE1) = n},

nez

from which we obtain
e(Pu(X,[Ca]) = Y n-e(Ty).
n
Note that e(Pic?(C')) may not be constant for C € T,, as it depends on the singularities of C.

Then, we stratify further

T, = |_|Tm, where T),; = {C € T, : e(Pic®(C)) = 4}.

By equation (3.12), we have T}, ; = T},_ki ;. Then,

e(P(X, [Cal) = e(P-k(X,[Cal) = kY, i elTus) = kY ie({C € |Cal s e(Pi(C)) = ).

7
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Note that >, ie({C € |Cq| : e(Pic®(C)) = i}) is independent of k, and so it corresponds to
the claimed constant a. Hence, Lemma 2.5 implies

DD eP(X [Ca)yted = D) Y Ny T (1 — )P 2,

G=20k=1-G G=01=0
for Nl,G’ € 7. O

The previous result yields

1
N l 20 G _ .
E Z 1,GY ) q anl(l _ qn)20(1 _ qny)2(1 _ qny—l)2

G=010=0

In particular, in the limit y —1 we obtain (for [ # 0 the y-terms on the left hand side vanish):

1
NO,GQG =

Hence, we recover the Yau—Zaslow formula from equation (1.1). This allows us to interpret the

integers Ny ¢ as the number of rational curves (counted with multiplicities) in a linear system
|C| of dimension G and of curves of arithmetic genus G on a K3 surface, c.f. Section 1. In
particular, No g > 0.

Remark 3.18. Consider the morphism
¢: M(0,[Cql, k) —|Cql|, F+—= supp(F).

Any torsion free sheaf of rank 1 supported on C € |Cg| is pure as C' does not have embedded
points. Even more, since Cg satisfies the condition of minimal intersection, we have seen that
any such sheaf is stable. Hence, the fibres of ¢ are given by ¢~(C) = PickT¢~1(C) ~ ?CO(C).
Then, we obtain

e(M(0,[Cal, 1)) = Die((C € |Cal : e(Picd(C)) = i}).

In particular, by the proofs of Theorem 3.17 and Lemma 2.5, we conclude
e(M(0,[Ce], k)) = Nog-

3.3. Partial normalisations as local contributions to the BPS invariants of stable
pairs. Consider the formula proved in Theorem 3.17 for a curve Cg < X of arithmetic genus

G satisfying the condition of minimal intersection:

D, D, eBX [ = > D Nyay' 91—y 2C.

G=20k=1-G G=0g9=0
In the previous subsection, we established that Ny g corresponds (up to multiplicity) to the
number of rational curves in a linear system |C|, where C' < X is an integral curve of arithmetic
genus G on a K3 surface. In this subsection, we investigate the relationship between the BPS
invariants N, ¢ and the integers ny(C') studied in Section 2, for curves C € |Cg|, where Cqg < X
is a curve of arithmetic genus G satisfying the condition of minimal intersection.
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Theorem 3.19. Let Hﬂb(k}G e be the relative Hilbert scheme of k-points associated to the family
Cc—1lg = |C¢q|. Then, we have an isomorphism Py1-c(X,[Cq]) ~ Hilb’éG/HG.

Proof. Consider the morphism
¢: (Oc—=Flc) € Pry1-c(X, |Ca|)—= (Homo. (Fle, Oc) « O¢) € Hilb§_ M-
By Lemma 3.15, ¢ is an isomorphism. O

The above isomorphism yields
(3.13) Y, e(HIbgHG Dyt = > Nyay' 9(1 - )*72,
k=1-G g=0

where Cq —1Ig = |C¢| denotes the family of curves associated to the linear system |Cg|.

Recall that, in Section 2 we proved the relation
(3.14) D (@I = N g (C)y' (1 — )2,
E>1-G 0<g<G

where C is a Gorenstein curve of arithmetic genus G and ny(C')’s are integers counting (modulo
multiplicity) partial normalisations of C'.

Via the adjunction formula, any element in the linear system |Cg| is Gorenstein. Consider
the stratification of Ilg = |Cg| by the topological type of the curves on it, say Ilg = | |, Tn.
Then, we obtain

e(Hilbg 7 1) = Dle(CHHETU Ce T, )e(Ts,).

Hence, by the equation (3.14) we have

D, eI Gyt = 3 > ng(C e Ty)e(Tn)y' (1 —y)* 2
k=1-G 0<g<G n

Comparing the previous equation with equation (3.13), we obtain the following result.

Lemma 3.20. Let Cqg < X be a curve of arithmetic genus G satisfying the condition of minimal
intersection. The integers Ng g from Theorem 3.17 satisfy following relation for 0 < g < G

Nyc = an(c e Tp)e(Ty),

where ng(C € T),) correspond to the integers from Theorem 2.6, where C € T,, < |Cgq|. Further-
more, as ng(C) = 0 for g > G, we have

Nya=0

for g > G.
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4. BPS AND GROMOV—WITTEN INVARIANTS

In this section, we explore the relation between the BPS invariants Ny ¢ from Section 3.1
and the Gromov-Witten invariants via the MNOP conjecture for Calabi—Yau 3-folds.

Let Y be a Calabi-Yau 3-fold, 8 € H2(Y,Z) be a non-zero curve class and let Py (Y, ) be

the moduli space of stable pairs with FEuler characteristic k£ and curve class 5. Set

Zpp(a) = Y (1) EAe(Py(Y, ))q".
k

Additionally, let G}, g(Y') be the genus h disconnected Gromov-Witten invariant with no con-
tracted contributions. For a summary on Gromov—Witten theory, see [PT14]|. Consider the

generating function

Z(;Wﬁ(u) = Z Gh7,3(Y)u2h_2.
h

Conjecture 4.1 (MNOP conjecture). In the setting described above, we have
Zpp(—€™) = Zaw,s(u).

Let X be a K3 surface and consider the Calabi—Yau 3-fold X x C. Let us use the MNOP
conjecture to express the Gromov-Witten invariants of X x C, G} g(X x C), in terms of the

BPS invariants for K3 surfaces explored in the previous sections.

Theorem 4.2. Let [Cq| be a curve class on X with minimal positive intersection with the
polarisation H of X. Let Py(X x C,[Cgq]) be the moduli space of stable pairs (F,s) on X x C
with discrete invariants x(F) = k and curve class [F| = [Cq], whose support is contained in a
fibre of the projection X x C—C (the condition on the curve class should be understood modulo
the isomorphism X ~ X x {t}). Then,

Pk(X X (C, C(;) sl Pk(X, Cg> x C.

Proof. Since Cg lies on a fibre of the projection X x C—C, the elements in the curve class
[C] are Gorenstein. Then, by Theorem 3.15, stable pairs (F,s) can be completely specified
by supp(F) and supp(coker(s)). Thus, we have the inclusion

(4.1) Pu(X,Cq) x C=Py(X x C,Cq), (F,s,teC)—(F,s)e X x {t}.

Note that the only obstruction for the above morphism to be an isomorphism is that a pair
(F,s) € Pr,(X x C,Cg) might be scheme theoretically supported on a thickening of a fibre, as
this would introduce an extra degree of freedom. However, this case never occurs. Indeed, since
C¢ satisfies the condition of minimal intersection, F is stable, and so End(F) ~ C. If F is
supported on a thickening C' x Spec(C[z]/(z™)) (with C' c X), we can define the endomorphism
F —% F, which is nilpotent. This contradicts the simplicity of F. O
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By Theorem 3.2, P (X, [C¢]) is smooth of dimension 3—2G +k, so dim(Py(X xC, [Cg])) +k
is even. Then, for 5 = [Cg] with Cg contained in a fibre of the projection X x C—C, the
previous Theorem yields

Zpp(—e™) = D e(Pe(X, B))e™.
k
By Theorem 3.17 and Lemma 3.20, we have

De(Pe(X,8)yF = > Nea(X)y'9(1—y)*2.
k 0<g<G
Thus, assuming the MNOP conjecture, we obtain the relation
D1 Noa(X)(—1)9712%9 2 cos(u/2)%72 = > G p(X x C)u?=2,
0<g<G h=0
which allows us to express the Gromov-Witten invariants of the Calabi—Yau 3-fold X x C in
terms of the BPS invariants of the K3 surface X. For example, for u = 0 we obtain
(4.2) G1p(X xC) = > Nya(X)(-1)912%72,
0<g<G

Note that the invariants N, ¢(X) depend only on 8%. Hence, equation (4.2) shows that the
invariants G g(X x C) also depend only on (2. Moreover, these relation also imply that the
Gromov—Witten invariants G g(X x C) are rational numbers and, in general, not integers.

APPENDIX 1: ON THE MODULI SPACE OF (SEMI)STABLE SHEAVES

In this appendix, we recall some basic facts about the moduli space of (semi)stable sheaves
on K3 surfaces following [HL10|. In particular, we outline the construction of the symplectic
structure on the moduli space of stable sheaves.

Let X be a K3 surface. A sheaf £ € Coh(X) is said to be pure of dimension d if for all
non-trivial coherent subsheaves F < &£, we have dim(F) = d. Equivalently, £ is pure if all
its associated points have the same dimension. The following characterisation has played an
important role in this thesis.

Proposition 5.1. Let £ € Coh(X) of codimension c. Then, £ is pure if, and only if
codim(&xt?(E,wx)) = ¢+ 1
for all ¢ > c.

Let H be a fixed polarisation of X. With respect to H, we consider two notions of stability:
Gieseker’s and slope stability.

Definition 5.2 (Gieseker stability). For £ € Coh(X) of dimension d, let P(£) be its Hilbert
polynomial with coefficients «;, and denote by p(£) = P(£)/ay its reduced Hilbert polynomial.

We say that £ is (semi)stable if it is pure and for all proper subsheaves F < £ we have

p(F)(<) <p(é),
where for polynomials f(m), g(m) we write f < g if f(m) < g(m) for m » 0.
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Definition 5.3. Let £ € Coh(X) of dimension 2. We define the slope of £ as
C1 (5) -H
&)= 1\
where ¢;1(€) denotes the first Chern class of £ and rk(€) its rank. We say that £ is p-(semi)stable

if any torsion subsheaf of £ has codimension 2 and

p(F)(<) < (&),
for all subsheaves F < & of positive rank. In general, given £ € Coh(X) of dimension d, we
define f1(&) := 24=1 3 where a;’s denote the coefficients of the Hilbert polynomial of &£.

Qg

The two stability conditions are related in the following form.

Lemma 5.4. If € is a pure coherent sheaf of dimension 2, then we have the following chain of

implications
E is p-stable = & is stable = & is semistable = & is p-semistable.
Furthermore, if € is p-semistable with ¢1(€) - H and tk(E) coprime, € is p-stable.
It is an important fact that stable sheaves are simple.

Proposition 5.5. Let F and G be semistable coherent sheaves of the same dimension. If
p(F) > p(G), then Hom(F,G) = 0. If F is stable and p(F) = p(G), a non-trivial morphism
f+ F—=G is is injective. If G is stable and p(F) = p(G), a non-trivial morphism f: F—G
is surjective. Furthermore, if F,G are stable with P(F) = P(G), any non-trivial morphism
f: F—G is an isomorphism.

Corollary 5.6. If £ is a stable sheaf, End(€) is a finite dimensional division algebra over C.
Hence, End(€) ~ C.

The moduli space of (semi)stable sheaves. We are interested in parametrising (semi)stable
sheaves with fixed numerical invariants specified by a so called Mukai vector on a polarised K3
surface (X, H).

Definition 5.7. Consider the lattice
H*(X,2) = H(X,Z)® H*(X,Z) ® H*(X,Z)
with the pairing given by
(v, w ) = vgwy — viw + VoW,

where v = (v, v1,v2), w = (wp, w1, wz) € H®(X,Z). This lattice is called Mukai lattice.
The Mukai vector of £ € Coh(X) is defined by

2
1
— —ca+7),
5 ~2tT)

where ch(€) denotes the Chern character of £, r is its rank, ¢; is its first Chern class and ¢z is

v(€) == ch(E)A/Td(X) = (r,c1,

its second Chern class. We say that the Mukai vector v is primitive if it is not divisible by any
integer m > 1.

3Note that p(€) = aa(Ox)a(E) — aa—1(Ox), so the two slopes do not coincide in general.
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Consider the following moduli functor
M(v): (Sch /C)°P — Sets,

where for S € Sch /C, we set M(v)(S) to be the set of isomorphism classes of S-flat families of
semistable sheaves on X with Mukai vector v modulo the relation ~. We say F ~ G if there
exists £ € Pic(S) with F®p*L ~ G. Additionally, for f: S’—S let M(f) be be the pull-back
along f x idx. Similarly, we define the open subfunctor of stable sheaves M?*(v) < M(v).

A scheme M (v) correpresenting the moduli functor M(v) is called moduli space of semistable
sheaves of Mukai vector v. Gieseker constructed the moduli space M(v) of stable sheaves on

X as a projective scheme, see [Gie77].

Theorem 5.8. The moduli space of stable sheaves M?*(v) is smooth of dimension {v,v)+2.

Proof. The obstruction of deforming & € M*(v) lies in Ext?(£,€), see [HL10]. Consider the
trace map

tr: Ext?(€,8)—H*(X, Ox),
which is an isomorphism for simple sheaves, as it is the dual of H%(X, Ox) ~ C— Hom(&, €).
Via this map, the obstruction to deforming & € M?*(v) gives an obstruction to deforming the
line bundle det(£). On a K3 surface, the obstruction to deforming line bundles vanishes. Hence,
the obstruction to deform £ also vanishes.
Furthermore, the Zariski tangent space at £ € M?*(v) is identified with Ext!(€, &), see [HL10].
By Grothendieck-Riemann-Roch, we obtain

—(wv,v) = x(&,E) = dimHom(&, £) — dim Ext! (&, ) + dim Ext?(€, £).
Via Serre duality, Ext?(€,€) ~ Hom(&,£)Y ~ C. Hence, the dimension of the moduli space of
stable sheaves is M?*(v) is (v, v ) +2. O
Given a Mukai vector v, we say that a polarisation H is v-general if it does not lie in any

wall in the ample cone of X. Details can be found in Section 4.C. in [HL10].

Proposition 5.9. Let £ € Coh(X) be a semistable sheaf. If its Mukai vector v(E) is primitive

and the polarisation H is v-general, £ is stable.

Symplectic structure on the moduli of stable sheaves. We present here an sketch of
the construction of the symplectic structure on the moduli space of stable sheaves, and refer to
[HL10] for details.

Stable sheaves are simple and the tangent space of the moduli space M(v) at a simple sheaf is
given by Te M(v) ~ Ext!(&,€). Given a € H*(X,wy), we define

m(a): Ext}(E,€) x Ext!(£,8) -2 Ext?(£,€) Y- H*(X,0x) % H(X,wy) ~C,
where o denotes the Yoneda cup product and ¢r the trace. For holomorphicity, see [Muk88|

pp. 154. The question whether the two form 7(«) is non-degenerate is reduced to the following
local result, see [HL10].
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Proposition 5.10 (|[HL10|). Let £ € M*(v). The 2-form 7(a)(E) is non-degenerate if, and only
if multiplication by o induces an isomorphism oy : Ext (€,€) — Ext%c(é’, ER®RKx). Hence, by

picking a as Ox L Ox ~ Kx, we obtain the non-degeneracy of the symplectic structure.

Proof. Let £*— & be a finite locally free resolution of £ and let A®* = Hom*(E°®,£*), where we
define Hom!(£*,£°*) = ®pHom(EF, £FF1) with boundary operators dp = dgop—(—1)%9%pode.
Then,
A @A = A° e 0y

is a perfect pairing and leads to an isomorphism A®*—=Hom*(A*, Ox). Furthermore, for a
section a: Ox — Kx, we have the commutative diagram

(A*QKx)® A — Hom*(A*, Kx) @ A —— Kx

(1®x)®1 T aT

A*® A* A* Ox ,

where the morphism ev: Hom*®(A*, Kx)®.A* — Kx is given by ¢®a+—¢(a). This morphisms
of complexes induce morphisms in cohomology that make the following diagram commute

Exty (£, ® Kx) ® Exty (€,8) = Eath (A, Kx) @ B/ (A*) —— H*I (X, Kx)

o] |

Ext’ (€, €) ® Extl (£,€) — Exti7 (€, €) T, Hi*I(X,0x) .

Note that for i = j = 1, 7(a)(€) is the map from the lower left corner of the diagram to the
upper right corner.
Since X is a smooth surface and A° is a bounded complex of coherent sheaves, Serre duality

ensures that the pairing
Ext* (A%, Kx) @ H' (X, A®)—H*(X,Kx) = K

is a perfect pairing. Hence, following the commutative diagram for the case ¢ = j = 1, we

conclude that 7(«) is non-degenerate if, and only if « is an isomorphism. O

For closedness of the 2-form see Proposition 10.3.2. in [HL10|.

APPENDIX 2: EULER CHARACTERISTIC OF THE COMPACTIFIED JACOBIAN OF A CURVE

In this appendix, we study the topological Euler characteristic of the compactified Jacobian
of a rational curve C', and present explicit calculations for the case of C' having only simple
singularities. This appendix follows closely [Bea97].

In Proposition 1.9, we saw that given an integral rational curve C' and its minimal unibranch

partial normalisation C' — C, we have

e(Pic®(C)) = e(Pic®(C)).
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Hence, we may assume that C' is rational unibranch.

Let z € C, 0y := dim¢(Og ,/Oce) and ¢ = Og(3,(26,)[z]), where C denotes the normalisation
of C. Define the finite dimensional algebras A, = O¢ ;/ca, A, = (’)@’I/Cm, and let G(dy, flm)
be the Grassmannian of codimension 8, subspaces of A,. Furthermore, let G, G(dy, /Nlm) be
the closed subvariety consisting of the elements that are A;-modules. Since any O¢ ,-module
contains ¢, see Lemma 1 in |[GPLI7|, G, parameterises O¢ ;-modules L, which have codi-

mension d, as submodules of O .

Note that Og/c is a skyscraper sheaf with fibre A, at z, hence [ e G2 parametrises Oc-
modules £, which are submodules of Og with dim((’)dx /L) = 0, for all z € C. Thus, given
L €[] 5, Gz, we have that x(Og/L) = >, 0. = X(Og/Oc¢), which implies that £ € ?CO(C).
Thus, we have a morphism

e: H Gy — @(C).

TreX

Proposition 6.1 ([Bea97|). The morphism e: [[ .5, Gz — Pic®(C) constructed above is a

homeomorphism.

TEX

Proof. Via the adjunction formula we have
r(r—1)
2 )
where Bl,C denotes the blow-up of C at x and r is the multiplicity of the singularity x € C.

pa(BlzC) = pa(C) -

Hence, since p,(C') = 0, by applying the previous equation successively, we get a bound on the

number of singularities, as well as on their multiplicities. Hence, [ [,.y G, is compact. Since

zeY
both varieties are compact, it is enough to prove that e is a bijection.

For the injectivity, let £, M € [[,o5, G5 with e(L) = e(M). Then, £ ~ M, which implies that
there exists a rational section s € Op such that M = s£. By definition of G,, we also have

that dim(Og ,/Ls) = 6 = dim(Og ,/My). Hence,
dim(Og ,/Mz) = dim(O¢, ,/Ls) = dim(s;Og ./ M),

which implies that dim(O¢ ,/5:O0¢ ,) is zero, and hence Og , = 5,0¢ , for all z, and so s must
be constant. 7 ’

For the surjectivity, let m: C—C be the normalisation and let £ e @(C’). Denote by
L = 7*L/T(7*L). We claim that deg(£) < 0. Consider the exact sequence *

0—=L—>fuL—>T7—>0

where 7 a skyscraper sheaf supported on the singular locus of C', such that 7,, < §, forallx € C.
Thus, we have y(£) — x(£) < x(Og) — x(O¢), which implies

deg(£) = x(£) = x(Og) < x(£) = x(O¢) = 0.

4For the proof of exactness, see Lemma 1 in [GPL97]
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Now, since C'is rational, £~* = O(— deg(£)). Thus, it has a global section whose zero locus is

contained in the singular locus of C'. Hence, using the isomorphisms

Homo,. (£, Og) ~ Homo, (7*L, Og) ~ Homo,, (£,0¢),
we conclude that there exists a morphism ¢: E%(’)@ which is bijective outside of ¥ because
the associated section has only zeros on X. Let n, = dim(Og ,/i(L;)) for each x € 3. Then,
we have > s n, = dim(Og/i(L)) as Og/i(L) is supported on ¥ with fibres of dimension n,.
Then, since >} d, = x(Og) — x(Oc¢) = g, we have

D ne = dim(Og/i(L)) = x(Og) = X(£) = g = ) ba.

TEX TEX

g

The variety G, depends only on the completion of the local ring Oc,. We have seen
that e(G,) parametrises the sub-O¢ z-modules L of the normalisation Oé,x of Oc, satisfy-
ing dim(Oc¢ /L) = dim(O¢ 2/Oc ).

Corollary 6.2. Let C' be a rational unibranch curve. Then, e(Pic®(C)) = [[,cx €(z), where
e(z) = e(G,) and X denotes the singular locus of C.

Proof. The previous proposition guarantees that e(@(C)) = [ [ ec €(z). Furthermore, note
that if 2 is a smooth point, then G, = {e} because by definition G, parametrises sub-Oc ;-
modules £ of the normalization Og , of O¢,e with dim(Og /L) = dim(Op ,/Oc,z). Hence,
e(x) = 1if z is a smooth point of C, and the product runs over the singular locus ¥ < C. O

Proposition 6.3. Let m,n be two coprime integers. If the singularity x € C' has as local model

Cl[z, y]]/ (™ — y™), we obtain ,
1 (p+q
6(x)_vaq( p )

Proposition 6.4 (|Bea97|). Let C' be a rational curve and let x € C be a simple singularity.
Then, e(x) is the number of isomorphism classes of torsion free rank 1 Oc¢ z-modules., and we

have:
e(x) =1+1 if x is of type Ag;
e(x) =1 if z is of type Agii1;
e(x) =1 if x is of type Dy (I >2);
e(x) =1 ifxis of type Dayy1 (1 = 2);
e(z) =5 if x is of type Es;
e(x) =2 if x is of type Er;
e(x) =7 if x is of type Es.

Proof. Assume that C has only one singularity with local ring O¢,. Consider the natural
action of Pic’(C) on ?{:0(0), which has finitely many orbits corresponding to the different
isomorphism classes of rank 1 O¢ ,-modules. Since the orbits of the action are of the form A",
they have Euler characteristic 1, and so e(x) = e(fco(C)) equals the number of these orbits.

Since O¢, is unibranch, its completion is of the form Cl[[z, y]]/(2P —y9) withp =2, ¢=21+1
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for the type Ay, p = 3,q = 4 for the type Eg, and p = 3, ¢ = 5 for the type Fg. Then, the
claimed result follows from Proposition 6.3.

If the singularity of C is of type Ag 41, it has local model defined by 22 — 4% = 0. Locally
around such a singularity, the curve C' is the union of two smooth branches with a high order
contact, so by Proposition 1.9 we have e(x) = 1. A D; singularity is the union of a A;_3 branch
and a transversal smooth branch, hence we have the result by Proposition 1.9. Finally an Fr
singularity is the union of an ordinary cusp and its tangent, hence it has e(x) = 2. ]

APPENDIX 3: PROOF OF THEOREM 3.10

Yoshioka proved that if r > 0, or r = 0 and Cg ample with C% = 2G — 2, the moduli space
of u-semistable sheaves on a K3 surface X, M(r,[Cg],a)), and the Hilbert scheme of points
X[G=ral are deformation equivalent, see Theorem 0.2. in [Yos99]. In this appendix, we present
a modification of Yoshioka’s proof of Theorem 0.2. to include the case r = 0 for Cq satisfying
the condition of minimal intersection.

Theorem 7.1 ([KYO00]). Let Cq < X satisfying the condition of minimal intersection. Then,
the moduli space of p-stable sheaves M(0,[Cg],a) is deformation equivalent to the Hilbert

scheme of points X\G1. In particular, we have
X (M(0,[Cgl, a)) = xu (X[G])7
where xu(—) denotes the Hodge polynomial.

We first consider the following intermediate results.

Theorem 7.2 ([Yos99]). Let v,v; be Mukai vectors with (v?) = —2. Then, for w = —R,, (v)
we have the isomorphism My (v) ~ Mg (w), if v1,v satisfy:

(1) =[v1o{v1,v) —[v]o > 0,

(2) [v]o ><(wv,v)/2+ 1, and

(3) = (w1, v) > w,v) /2.

Theorem 7.3 ([Yo0s99|). Let X1, X5 be two K3 surfaces and let vy = (Ir,lni,a1) € H*(X1,7)
and vo = (Ir,ln2, a2) € H*(X2,7Z) be primitive Mukai vectors such that:

(1) r,1 >0,

(2) 7+ m1 and r + 72 are primitive, and

(3) (o1 = (3,02,

(4) a1 = az mod [
Then, My, (vi) and My, (v2) are deformation equivalent.
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Theorem 7.4 ([Yos99]). Let v = (r,n,a) Mukai vector such that (r,n) is primitive with r > 0
and {v,v) = —2. Then, for a general H, My (v) # & and Mpg(v) is deformation equivalent
to Hilb V2 /241,

Proof. By Theorem 7.3 and the fact that the Hilbert schemes of n-points of two K3 surfaces
are deformation equivalent, it is enough to assume that Pic(X) = HZ with H? = 2(ar + s) and
a>s+1for{(v,v)=2s.

Let uw = (a,—H,r) and let v1 = v(Oy). For F € Mpy(u), we have {(v1,u )y = —x(F) = —(r +a).
Since u satisfies the conditions of Theorem 7.2, we have

M(u) ~ M(—=Ry, (u)) for — Ry, (u) = —u — (v, u)yv; = 0.

Let now Z be a K3 surface with Pic(Z) = H'Z and H'? = 2(a + s). Theorem 7.3 yields
My (u) ~ Myg/(a,—H’,1). By Theorem 7.2 applied to v; = v(Ox), we obtain an isomorphism
Mpyi(a,—H',1) ~ Myg/(1,H' a). Thus, we have

MH(U) =~ MH/(l, H/, a).
Finally, we note that Mg/ (1, H',a) ~ Hilb**}(X). Indeed, for F € Mg (1, H', a) we have an
exact sequence
0—F — det(F) = Oz(H')—Q—0.

Define the morphism F+—(Oz—Q(—H’)). We construct the inverse as follows. Via the
above exact sequence, we identify F(—H') with the ideal sheaf of a closed subscheme W < Z.
Then, we define the inverse

W e Hilb* (X)) Ty (H') € My(1,H', a).
Note that Zy (H') is stable as it is a torsion free sheaf of rank 1 on an integral variety. 0

Proof of Theorem 7.1. We first reduce to the case r > 0. Let H be the ample line bundle
from the condition of minimal intersection for Cg. After replacing F € M(0,[Cg],a) by
F®H®" e M(0,[C{G]],a + ndeg(Cg)) for n big enough, we may assume that the evaluation
map ¢: H°(X, F)® Ox —= F is surjective for all F € M(0,[Cg],a). By Lemma 2.1 in [Yos99],
ker(¢) is p-stable. Then, we consider the Mukai reflection with respect to v(Ox) given by

o: M(0,[Cq],a) —M(a,—[Cg],0), F+— ker(¢).
The morphism @ is a proper monomorphism, so it is a closed immersion. Since M(a, —[Cs],0)

is irreducible and both moduli spaces have the same dimension, ® is an isomorphism. Finally,

we conclude by Theorem 7.4. 0
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