
BEAUTIFUL FORMULAE FOR SMOOTH CUBIC SURFACES:
QUADRUPLES OF POINTS AND TWISTED CUBICS

A. OVALLE

Zusammenfassung. Motiviert durch die in [GS14] bewiesene X-F pXq Formel, untersuchen
wir die Existenz und mögliche Form von Formeln bis zum Grad vier im Grothendieck-Ring
der Varietäten für Körper der Charakteristik 0, die glatte kubische Flächen mit ihrem Hilbert-
Schemata verallgemeinerter getwisteter Kubiken in Beziehung setzt. Dafür wenden wir die
stabil-birationale Realisation und die motivische Realisation nach Gillet–Soulé. Insbesondere
beweisen wir in Anlehnung an [Pop18], dass es keine „beautiful" Formel für glatte kubische
Flächen mit dem zugehörigen Hilbert-Schemata verallgemeinerter getwisteter Kubiken gibt
und dass die X-F pXq Formel die einzige „beautiful" Formel vom Grad zwei für glatte kubische
Flächen mit ihrer Fano Varietät von Geraden ist.

Contents

1. Introduction 2
2. Preliminaries 3
2.1. Grothendieck ring of varieties 3
2.2. Beautiful Formulae in the Grothendieck ring of varieties 5
2.3. Realisations of the Grothendieck ring of varieties 7
2.4. The 27 lines 9
2.5. Twisted cubics in cubic surfaces 11
3. Obstructions from representation theory via the Gillet–Soulé motivic realisation 15
4. Obstructions from stable birational geometry via the stable birational realisation 22
5. Appendix 23
5.1. Fano variety of lines 23
5.2. Grothendieck ring of Chow motives 24
5.3. Tools from birational geometry 26
5.4. Resolutions of rational double point singularities 27
5.5. Symmetric product 28
References 30

1



2 A. OVALLE

1. Introduction

The aim of this thesis is to study the "beautiful" formulae in the Grothendieck ring of vari-
eties relating the classes of symmetric powers of smooth cubic surfaces Spnq, their Fano variety
of lines F pSq, and their associated LLSvS varieties ZpSq, which parameterises the generalised
twisted cubic curves in the cubic surface S, [Leh+17]. We study the existence and the possible
form of such formulae up to degree 4 and for fields of characteristic 0, following [Pop18].

The Grothendieck ring of K-varieties is the free abelian group generated by isomorphism classes
of varieties modulo the scissor relation rXs “ rW s ` rX ´W s, for W Ă X a closed subscheme,
with the ring structure induced by rXs ¨ rY s “ rX ˆ Y s. We can consider formulae in this ring,
for instance the so called X-F pXq relation rXr2ss`rPdsrXs`L2rF pXqs proved in [GS14], where
X Ă Pn`1 is a cubic hypersurface and F pXq its associated Fano variety of lines. This formula
is not only beautiful in the sense that it allows us to relate the geometry of a cubic hypersurface
and the geometry of its Fano variety of lines, for example by relating the Hodge numbers of
F pXq and X [Huy23] or permitting us to calculate the zeta functions of F pXq for smooth cubic
threefolds and fourfolds [DLR17], but it is also beautiful in a more precise sense introduced by
Galkin in [Gal17], see Definition 2.15.

There are different geometric objects that can be considered in a cubic surface to shed light on
its geometry. In this thesis we will be interested mainly in configurations of points and twisted
cubics. Since the Hilbert scheme of points parameterises configurations of points and the LLSvS
variety parameterises generalised twisted cubics in the cubic surface [Leh+17], our main goal
is to address the following question: What types of formulae exist in the Grothendieck ring of
varieties for smooth cubic surfaces S with its LLSvS variety and symmetric powers of S? In or-
der to deal with this question, we will employ realisations of the Grothendieck ring of varieties,
more specifically the stable birational realisation [LL01] and the Gillet–Soulé motivic realisa-
tion [GS96]. This will allow us to apply results from birational geometry and representation
theory to find obstructions to the possible formulae holding in the Grothendieck ring of varieties.

The first chapter briefly introduces the notion of the Grothendieck ring of varieties and ex-
plores basic results about this ring. In this chapter will be presented a proof of the X-F pXq

relation, which is an example of a beautiful formula of degree 2 in the Grothendieck ring of
varieties. Additionally, we will study two realisations of this ring, namely the stable birational
realisation and the Gillet–Soulé motivic realisation, which will be our main tools to study the
Grothendieck ring of varieties and beautiful formulae.
In the second chapter we will explore obstructions to the possible form of beautiful formulae
coming from the Gillet–Soulé motivic realisation and representation theory. In particular, we
will prove, following [Pop18], that the only possible form of a beautiful formula of degree 4 for
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smooth cubic surfaces S, with their LLSvS variety ZpSq, is

L4rZpSqs “ rSp4qs ´ p1 ´ L ` L2qrSp3qs ´ LrSsrSp2qs ` pL ` L2 ` L3qrS2s ´ 2L2rSp2qs

´ pL ´ L2 ` L3 ´ L4 ` L5qrSs ` pL2 ` L4 ` L6q
(1.1)

and the only possible form of a beautiful formula of degree 2 for S and its Fano variety of lines,
F pSq, is given by the X-F pXq relation.
Finally, the third chapter will be dedicated to obstructions to the form of beautiful formulae
coming from the stable birational realisation. In particular, we will prove, following [Pop18],
that the formula (1.1) is not a beautiful formula and, in consequence, there is no formula of
degree 4 relating smooth cubic surfaces and their associated LLSvS variety.

Acknowledgements: I wish to thank my supervisor Prof. Dr. Daniel Huybrechts for guiding
me through the process of writing this thesis, his willingness to answer my questions and
his recommendations, and Dr. Gebhard Martin for introducing me to this exciting area of
mathematics. During my Bachelor at the University of Bonn I was supported by a scholarship
from the Friedrich Ebert Stiftung.

2. Preliminaries

2.1. Grothendieck ring of varieties. This subsection is based on [CNS18].

Definition 2.1 (Category V). A K-variety is for us a reduced and separated K-scheme of finite
type. The K-varieties form the category V with morphisms of K-schemes as morphisms.1

Convention: In this thesis we let K be a field of characteristic zero, unless otherwise
indicated, and we will refer to the K-varieties as varieties.

Definition 2.2 (The Grothendieck ring of varieties). The free abelian group of isomorphism
classes of V modulo the subgroup generated by xrXs ´ rW s ´ rX ´ W sy, for W Ă X a closed
subscheme with the reduced induced subscheme structure, carries a unique ring structure via
rXs ¨ rY s :“ rX ˆ Y s with neutral element rSpecpKqs. This ring is called the Grothendieck ring
of varieties K0pVq.

Example 2.3. The class of the affine line and of the projective space will play a crucial role.

(1) Define L :“ rA1s. Since An » pA1qn, we obtain rAns “ Ln.
(2) Consider D`px0q Ă Pn. Since D`px0q » An and Pn ´ D`px0q » Pn´1, we have

rPns “ 1 ` L ` ¨ ¨ ¨ ` Ln.

Definition 2.4 (Pointwise trivial fibration). Let X,Y, F be varieties. A morphism f : X // Y

is a piecewise trivial fibration with fibre F if there exists a finite partition pYiqiPI of Y into
locally closed subsets such that X ˆY Yi » F ˆ Yi are isomorphic as Yi schemes for every i P I,
where Yi are endowed with the reduced induced subscheme structure.

Example 2.5. Any geometric vector bundle is a pointwise trivial fibration by definition.
1Here we are using the convention used in [Bit04], since Bittner’s presentation of the Grothendieck ring of

varieties plays an important role in this thesis.
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Definition 2.6 (Piecewise isomorphism). Let X,Y be varieties. They are said to be piecewise
isomorphic if there exists an integer n and finite partitions pX1, . . . , Xnq, pY1, . . . , Ynq into locally
closed subsets of X and Y respectively endowed with the reduced induced subscheme structure,
such that for every i holds Xi » Yi as varieties.

Lemma 2.7. Let X be a variety with finite partition pX1, . . . , Xnq of locally closed subsets
endowed with the reduced induced subscheme structure. Then

rXs “
ÿ

iě1

rXis.

Proof. Since X1 is a locally closed subset, there exist closed subsets X 1
1 Ă X2

1 with X1 “

X2
1 ´ X 1

1. Let U “ X ´ X2
1 , then rXs “ rX2

1 s ` rU s. Additionally, by X1 “ X2
1 ´ X 1

1, we get
rX2

1 s “ rX 1
1s ` rX1s, hence rXs “ rX 1

1s ` rX1s ` rU s.
Now, for i P 2, . . . , n we have X 1

1 X Xi Ă Xi is a closed subset and U X Xi is its complement,
therefore rXis “ rX 1

1 X Xis ` rU X Xis. Additionally, tX 1
1 X Xiuiě2 and tU X Xiuiě2 form

a partition of X1 and U respectively, which implies by induction rX 1
1s “

ř

iě2rX 1
1 X Xis and

rU s “
ř

iě2rUXXis. Thus, we have rXs “
ř

iě2rX 1
1XXis`rX1s`

ř

iě2rUXXis “
ř

iě1rXis. □

Corollary 2.8. Let X, Y be piecewise isomorphic varieties. Then rXs “ rY s. □

Lemma 2.9. Let X, Y , F be varieties and let f : X // Y be a piecewise trivial fibration with
fibre F . Then X and F ˆ Y are piecewise isomorphic and

rXs “ rF srY s.

Proof. Since f is a piecewise trivial fibration, there exists a finite partition into locally closed
subsets of Y , let pYiqi be such partition. Then pX ˆY Yiqi is a partition of X and F ˆ Y has
partition pF ˆ Yiqi. By definition of pointwise trivial fibration we know rX ˆY Yis “ rF ˆ Yis,
hence rXs “ rF ˆ Y s “ rF srY s by Corollary 2.8. □

Corollary 2.10. Let X be a smooth variety and W Ă X a smooth closed subvariety of codi-
mension n. Then

rBlW pXqs ´ rPn´1srW s “ rXs ´ rW s.

Proof. By the construction of blow-ups we have the relation rBlW pXqs´rPpNW {Xqs “ rXs´rW s.
For W Ă X smooth closed subvariety of codimension n, PpNW {Xq //W is a projective bundle
of dimension n´ 1, which means that it is a Zariski locally trivial fibration with fibre Pn´1 and
therefore the result follows from Lemma 2.9. □

Definition 2.11 (pre-λ-structure). Let R be a commutative ring with 1. A pre-λ-structure on
R is an operation λ : R ˆ N //R such that for all x, y P R hold:

(i) λ0pxq “ 1,
(ii) λ1pxq “ x,
(iii) λnpx` yq “

ř

i`j“n λ
ipxqλjpyq.



5

Remark 2.12. For x P R let Λpx, tq :“
ř8

n“0 λ
npxqtn. Note that the three conditions of a

pre-λ-structure are equivalent to the following two conditions:
(i) Λpx, tq “ 1 ` xt`

ř8
n“2 λ

npxqtn,
(ii) Λpx` y, tq “ Λpx, tqΛpy, tq.

Lemma 2.13. The symmetric product Xpnq “ SymnpXq defines a pre-λ-structure on K0pVq

with the property that rSymnpAm ˆXqs “ LnmrSymnpXqs.

Proof. The first two conditions of Definition 2.11 are clear. By the last remark, the third con-
dition is equivalent to the fact that the Kapranov’s Zeta function ZKapprXs, tq “

ř8
i“0rXpnqstn

is multiplicative, which was proved by Totaro [Göt00]. The property rSymnpAm ˆ Xqs “

LnmrSymnpXqs was proved in [Göt00]. □

2.2. Beautiful Formulae in the Grothendieck ring of varieties. We have enough infor-
mation to make precise what we mean by a formula relating the geometry of two varieties. For
instance, we could ask if it is possible to find a formula in the Grothendieck ring of varieties
encoding the geometric relations between smooth cubic hypersurfaces and their associated Fano
variety of lines. The following discussion is based on [Huy23] and [GS14].

Let V be a K vector space of dimension n`2. Consider the Grassmannian of m`1 planes in V ,
denoted by Gpm ` 1, V q, or equivalently G :“ Gpm,Pn`1q, where Pn`1 is the projectivisation
of V . Let E be the universal bundle of the Grassmannian G, which fits in the following short
exact sequence:

0 // E // V b OG // Q // 0 .

The universal bundle E can be thought of as tpΓ, vq : Γ P G, v P Γu, from which it is clear that
it is of rank m`1. After taking the projectivisation of the universal bundle we obtain, [GW10]:

LG :“ PpEq
� � // ProjpSympV ˚ b OGqq “ Gpm,Pn`1q ˆ Pn`1 //Gpm,Pn`1q “ G,

which is a Pm-bundle, since the fibre at Γ P G corresponds exactly to elements of the form
pΓ, vq, where v P Γ.

Let X be a smooth cubic hypersurface, consider the case m “ 1 and restrict the bundle to
F pXq Ă Gp1,Pn`1q to obtain the P1-bundle

(2.1) L :“ LG|F pXq
//F pXq.

Consider now

(2.2) LG|X :“ tpx, Lq : x P X X L,L Ď Pn`1 a lineu //X,

which is a Pn-bundle because the fibre at x P X corresponds to lines in Pn`1 passing through
x.

We still need one ingredient in order to prove the X-F pXq relation, namely the isomorphism

Xr2s ´ Lr2s » LG|X ´ L,
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where Xr2s is the Hilbert scheme of subschemes of length 2 of X. A length 2 subscheme τ of
X is either a pair of K-points, a pair of Galois conjugate points or one K-point and a tangent
direction to it. In any of these cases there is a unique K-rational line lτ passing trough τ . Define
Xr2s ´Lr2s //LG|X sending τ P Xr2s to px, lτ q P LG|X , where lτ is the unique line containing τ
and x is the residual intersection of lτ and X. Note that lτ is not contained in X because we are
restricted to elements in Xr2s ´ Lr2s. The inverse of the latter morphism is LG|X ´ L //Xr2s

defined by sending px, lq to the residual intersection of l and X.

Theorem 2.14 (X-F pXq relation, [GS14]). Let X Ă Pn`1 be a smooth cubic hypersurface.
Then in K0pVq the following equation holds

rXr2ss “ rPnsrXs ` L2rF pXqs,

where L “ rA1s.

Proof. The Pn-bundle LG|X //X in (2.2) implies by Lemma 2.9 the following formula in the
Grothendieck ring of varieties

rLG|Xs “ rPnsrXs.

Similarly, the P1-bundle L //F pXq in (2.1) implies

rLs “ rP1srF pXqs.

We have furthermore the isomorphism Xr2s ´ Lr2s » LG|X ´ L constructed above and the
P2-bundle Lr2s //F pXq, yielding

rXr2ss “ rLr2ss ` rLG|Xs ´ rLs “ rP2srF pXqs ` rPnsrXs ´ rP1srF pXqs “ rPnsrXs ` L2rF pXqs,

where L denotes the class of the affine space A1 in the Grothendieck ring of varieties. □

The last result is known as the X-F pXq relation and allows us to relate the geometry of X
and the geometry of F pXq via a formula in the Grothendieck ring of varieties, for instance this
relation was used in [GS14] to study the Hodge structure of F pXq. Motivated by this relation
we will define what we mean by a beautiful formula and this will permit us to state the main
objective of this thesis.

Definition 2.15 (Beautiful formulae, [Pop18]). A polynomial expression with formal symbols
rXs “ rXp1qs, rXpnqs, rXns, rF pXqs, rZpXqs and L vanishing at any smooth cubic surface
X “ S, where F pXq and ZpXq are the Fano variety of lines and the LLSvS variety associated
to X respectively, cf. Theorem 2.39, will be called a beautiful formula for smooth cubic surfaces
with F pXq and/or ZpXq. We assign a degree to such a formula by assigning degree n to the
classes rXpnqs and rXns and 0 to the classes rF pXqs, rZpXqs and L. If the formula does not
contain the symbols rF pXqs or rZpXqs, we call the formula homogeneous.
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Remark 2.16. If S is a smooth surface, the Göttsche formula, [Göt00]:

8
ÿ

n“0

rSrnsstn “

8
ź

i“1

ZKapprSs,Li´1tiq,

where ZKapprSs, tq “
ř8

i“0rSpnqstn is the Kapranov’s Zeta function, allows us to express any
beautiful formula for a smooth surface S involving symmetric powers rSpnqs in terms of their
Hilbert scheme of points rSrnss and vice versa.

Example 2.17. The X-F pXq relation can be written in the following form

rXp2qs “ p1 ` LnqrXs ` L2rF pXqs,

which is an example of a beautiful formula of degree 2.

2.3. Realisations of the Grothendieck ring of varieties. The Grothendieck ring of vari-
eties and therefore formulae in this ring are still poorly understood and, in order to understand
it better the so called realisations or motivic measures are useful tools. More specifically, we
will use the stable birational realisation and the Gillet–Soulé motivic realisation to determine
obstructions to the possible form that beautiful formulae can possibly have.

Definition 2.18 (Realisation). A realisation of the Grothendieck ring of varieties with values
in the ring R is a ring homomorphism K0pVq //R.

We will first consider the stable birational realisation, which will play a crucial role in deter-
mining obstructions to the form of beautiful formulae via stable birational geometry.

Definition 2.19 (Stable birational equivalence). Two varieties X, Y are said to be stably
birationally equivalent if the varieties XˆPn and Y ˆPm are birational for n,m P Zě0. Let SB
denote the multiplicative monoid of classes of stable birational equivalence of smooth varieties
with product rXs ¨ rY s :“ rX ˆ Y s.

We will proceed to prove an interesting result by Larsen–Lunts [LL01] that ensures the
existence of a realisation of the Grothendieck ring of varieties onto the monoid ring ZrSBs,
which induces an isomorphism K0pVq{pLq » ZrSBs. In order to prove it, we need the so called
Bittner’s description of the Grothendieck ring of varieties [Bit04].

Theorem 2.20 (Bittner’s description of the Grothendieck ring of varieties, [Bit04]). The
Grothendieck ring of varieties has the following alternative presentations:

(sm) Let N be the multiplicative monoid of isomorphism classes of smooth varieties. Then
the Grothendieck ring of varieties is isomorphic to the free abelian group ZrN s subject to the
relations rXs “ rX ´W s ` rW s, where X is smooth and W Ă X is a smooth closed subvariety.

(bl) Let M be the multiplicative monoid of isomorphism classes of smooth complete varieties.
Then the Grothendieck ring of varieties is isomorphic to the abelian group ZrMs subject to the
relations rHs “ 0 and rBlW pXqs “ rXs ` rEs ´ rW s, where X is smooth and complete, W Ă X

is a smooth closed subvariety and E is the exceptional divisor of the blow-up BlW pXq.
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Remark 2.21 ([Bit04]). We get the same group in Theorem 2.20 if in psmq we restrict to quasi-
projective smooth varieties and if in pblq we restrict to smooth projective complete varieties.
We can also restrict to the connected case in both presentations.

Corollary 2.22 ([LL01]). Let G be a commutative monoid and ZrGs its monoid ring. Let M
be the multiplicative monoid of isomorphism classes of smooth connected complete varieties, see
Remark 2.21, and let Ψ: M //G be a homomorphism of monoids such that:

(i) ΨprXsq “ ΨprY sq if X and Y are birational,
(ii) ΨprPnsq “ 1 for all n ě 0.
Then there exists a unique ring homomorphism

Φ: K0pVq //ZrGs,

such that ΦprXsq “ ΨprXsq for all rXs P M.

Proof. The morphism Ψ induces a morphism Ψ1 : ZrMs //ZrGs. Additionally, consider the
canonical projection π : ZrMs //ZrMs{ „, where „ represents the relation rBlW pXqs ´ rEs “

rXs ´ rW s for BlW pXq the blow-up of X with centre W and exceptional divisor E.
By Theorem 2.20, we have K0pVq » ZrMs{ „, thus we need the morphism Ψ1 to factor through
ZrMs{ „, which happens if Ψ1prBlW Xs ´ rEsq “ Ψ1prXs ´ rW sq. For this we will prove
ΨpBlW pXqq “ ΨpXq and ΨpEq “ ΨpW q.
Since the blow-up morphism is a birational map, we have by the first condition ΨpBlW pXqq “

ΨpXq. Furthermore, we know that ΨpEq “ ΨpW qΨpPrq holds for some r, since rEs “

rW srPrs, then by the second condition we have ΨpEq “ ΨpW q. Hence, we have a morphism
K0pVq //ZrGs. □

Corollary 2.23 (Stable birational realisation, [LL01]). There exists a realisation

ΦSB : K0pVq //ZrSBs,

which induces an isomorphism K0pVq{pLq //ZrSBs.

Proof. Two isomorphic smooth complete varieties are stably birationally equivalent, therefore
we have a natural surjection Ψ: M // SB satisfying by definition the first condition in Corollary
2.22. The second condition follows from the fact that rPns “ rSpecpKqs in SB. This implies
by Corollary 2.22 the existence of a realisation ΦSB : K0pVq //ZrSBs, which is surjective by
the surjectivity of the morphism Ψ: M // SB. We need now to prove that the kernel of the
morphism ΦSB is exactly rLs.
We have in particular by Corollary 2.22 that ΦSBpPnq “ 1, then ΦSBp1 ` Lq “ ΦSBpP1q “ 1,
therefore pLq Ă KernpΦSBq.
Let rXs P KernpΦSBq, then by Theorem 2.20 we can write rXs “

řk
i“1 nirXis ´

řl
j“1mjrYjs as

sum of smooth complete varieties. Apply the realisation ΦSB to get
k

ÿ

i

miΦSBpXiq “

l
ÿ

j

njΦSBpYjq

in ZrSBs, which implies by the structure of the monoid ring, after renumbering, that k “ l,
mi “ ni and Xi and Yi are stably birationally equivalent. By this result, it suffices to prove
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that X ´ Y P pLq for X,Y stably birationally equivalent.
Note that in K0pVq one has

rX ˆ Pks “ rXsrPks “ rXsp1 ` L ` ¨ ¨ ¨ ` Lkq,

hence rX ˆ Pks “ rXs mod L. Thus, it suffices to prove that for X,Y being birational, we
have X ´ Y P pLq. Let X,Y be birational varieties, then by Theorem 5.20 we can factor the
birational map by a sequence of blow-ups and blow-downs, which implies that we can assume
X to be a blow-up of Y with smooth centre Z and exceptional divisor E. Therefore for some t
we have

rXs ´ rY s “ rZs ´ rEs “ rZs ´ rPtsrZs “ rZspL ` ¨ ¨ ¨ ` Ltq,

which implies the claimed result. □

Corollary 2.24. Let X,Y1, . . . , Yn be smooth, complete varieties such that the following equality
holds in the Grothendieck ring of varieties:

rXs “

n
ÿ

i“1

nirYis,

for some ni P Z. Then X is stably birationally equivalent to Yi for some 1 ď i ď n.

Proof. It follows directly after applying the stable birational realisation and considering the
formula in ZrSBs. □

Another realisation that will allow us to determine obstructions to the form of beautiful
formulae is the Gillet–Soulé motivic realisation.

Theorem 2.25 (Gillet–Soulé motivic realisation, [GS96]). There exists a unique ring homo-
morphism

µmot : K0pVq // K0pChowQq.

If rXs is the class of a smooth projective variety, its image is rhpXqs, where hpXq :“ pX, idX , 0q.

2.4. The 27 lines. The symmetries of the lines lying in a smooth cubic surface S Ă P3 will
give us restrictions to the possible formulae that we can construct for smooth cubic surfaces
in the Grothendieck ring of varieties. For this reason, we will review in this subsection some
results about them. We will be using mainly results from [Har77] and [Dol12].

Lemma 2.26. For any smooth cubic surface S Ă P3 over an algebraically closed field K holds
ωS » OSp´1q.

Proof. Since S is the zero locus of a cubic polynomial, say f , multiplication by f induces
an isomorphism IS » OPnp´3q. Hence, ωP3 » OP3p´4q implies via the adjunction formula
ωS » pωP3 b OpSqq|S » OSp´1q. □
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Lemma 2.27. Let S Ă P3 be a smooth cubic surface over an algebraically closed field. Then S
contains six pairwise disjoint lines l1, . . . , l6.

Proof. This follows from the following classical facts. One can find at least two skew lines in
S, say L1.L2, [Sha13]. Given L1 Ă S, it meets exactly ten other lines, which come in pairs of
intersecting lines tli, l

1
iu1ďiď5 such that li X lj “ li X l1j “ H for i ‰ j, [Sha13]. Since L2 does

not meet L1, then L2 meets at most one of the lines li, l1i for each 1 ď i ď 5, otherwise L1 and
L2 would be coplanar and therefore not disjoint. Without loss of generality, L2 does not meet
li for 1 ď i ď 5, which are by hypothesis disjoint. □

Any line in a smooth cubic surface S is a p´1q-curve, cf. Remark 2.30. Moreover, Table 8.3.
in [Dol12] shows that there is no set of 7 disjoint p´1q-curves in a smooth cubic surface. This
result can also be proved by showing that PicpSq » Z7 as in [Huy23], however we will deduce
the form of the Picard group as a consequence of the description of a smooth cubic surface as
a blow-up.

Lemma 2.28. Let S be a smooth cubic surface over an algebraically closed field. Then S is
isomorphic to the blow-up of P2 in six distinct points xi P P2 for i “ 1, . . . , 6.

Proof. Lemma 2.27 allows us to apply successively Castelnuovo’s Theorem 5.17 six times, hence
S is the blow-up of a smooth surface S0 at 6 distinct points. Since S does not have more than 6

skew lines, by Corollary 5.18 we have that S0 is minimal. The classification of minimal smooth
surfaces via the Kodaira dimension in Theorem 5.19 implies that S0 » P2. □

The last result provide us with substantial geometric information about smooth cubic surfaces
as we can appreciate from the following lemma. Let S Ă P3 be a smooth cubic surface over an
algebraically closed field. As proved in Lemma 2.28, S is isomorphic to the blow-up of P2 at
six distinct points P1, . . . , P6. Let π : S //P2 be the composition of the blow-ups, E1, . . . , E6 P

PicpSq the corresponding exceptional curves and let E0 P PicpSq be the class of π˚l0 for a line
l0 Ă P2.

Lemma 2.29. Let S Ă P3 be a smooth cubic surface. The following statements hold:
(i) NSpSq :“ PicpSK̄q » Z7,
(ii) The canonical divisor is KSK̃

“ ´3E0 ` E1 ` ¨ ¨ ¨ ` E6,
(iii) The intersection form NSpSq ˆ NSpSq //Z is given by E0.E0 “ 1, Ei.Ej “ ´δij for

j ‰ 0.

Proof. Since SK̄ is a blow-up of 6 points over P2, we can blow-up point by point and apply
Lemma 5.16 successively. Hence, NSpSq “ Z7.

The canonical divisor of P2 is given by KP2 “ ´3E0. By applying Lemma 5.13, we obtain
KSK̃

“ ´3E0 ` E1 ` ¨ ¨ ¨ ` E6.
Finally, the description of the intersection form follows from Lemma 5.16. □

It can be checked that the intersection form defined above is a bilinear form with signature
p1, 6q, which allows us to interpret the Néron–Severi group of S, NSpSq, as the lattice I1,6. The
orthogonal complement of the canonical divisor KK

S is a root lattice of type E6, with group of
isometries OpE6q, [Dol12].
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Remark 2.30. Consider the set I :“ tL P NSpSq : L.KS “ ´1, L.L “ ´1u. A curve C has
linear Hilbert polynomial HCpdq “ ad ` b, where papCq “ 1 ´ b is the arithmetic genus of
C and degpCq “ a is the degree of C. Additionally, via intersection theory we have papCq “
1
2pC.KS ` C2 ` 2q and degpCq “ C.p´KSq, [Har77]. This implies that L P NSpSq maps to a
line under the closed immersion SK̄

� � //P3
K̄

if and only if L P I, since the Hilbert polynomial
of a line is 1 ` d. In consequence, I consists of the classes of lines in the smooth cubic surface
SK̄ . Then, by Lemma 2.29 we obtain 27 classes of lines in SK̄ which are characterised as formal
sums of the exceptional curves E0, . . . , E6 P NSpSq as follows:

(i) Six lines: Ei for i ‰ 0,
(ii) Fifteen lines: E0 ´ Ei ´ Ej for i ‰ j ‰ 0,
(iii) Six lines: 2E0 ` Ei ´

ř6
j“1Ej for i ‰ 0.

Remark 2.31. Consider the set of roots R :“ tr P NSpSq : r.KS “ 0, r.r “ ´2u. The
reflections2 associated to roots generate a subgroup of the group of isometries of E6, denoted by
W, which is called Weyl group of type E6. This group stabilises I and preserves the intersection
form. By Lemma 2.29 we get following description of the vectors in R:

(i) One vector: 2E0 ´
ř6

i“1Ei,
(ii) Twenty vectors: E0 ´ Ei ´ Ej ´ Ek for different i, j, k ‰ 0,
(iii) Thirty vectors: Ei ´ Ej for i ‰ j,
(iv) Twenty vectors: ´E0 ` Ei ` Ej ` Ek for different i, j, k ‰ 0,
(v) One vector: ´2E0 `

ř6
i“1Ei.

2.5. Twisted cubics in cubic surfaces. In analogy to the X-F pXq relation, we could ask
if studying a specific family of curves in a variety gives us useful geometric information of the
original variety. We could for instance consider the geometric relations between smooth cubic
hypersurfaces and a variety parameterising the twisted cubics lying in them. To make this
notion precise we need some definitions and results. This subsection is based on [Leh+17].

Definition 2.32 (Hilbert scheme with Hilbert polynomial P ). Let X Ă Pn`1 be closed sub-
scheme and let P pdq be a polynomial in the variable d. There exists a scheme HP pXq called
the Hilbert scheme of X for the Hilbert polynomial P pdq, with a flat family of subschemes of
X

F Ă HP pXq ˆX
π

Ý // HP pXq,

having the following properties:
(i) All the fibres of π have Hilbert polynomial P pdq.
(ii) For any flat family F 1 Ă B ˆX

π1

Ý // B whose fibres have Hilbert polynomial P pdq, there
is a unique morphism α : B //HP pXq, such that F 1 is equal to the pullback of F .

Recall that a twisted cubic is a smooth curve C Ă P3, which is projective equivalent to the
image of P1 under the Veronese embedding of degree 3, rx0 : x1s

� // rx30 : x20x1 : x0x
2
1 : x31s.

We want to consider a Hilbert scheme as in Definition 2.32 parameterising the twisted cubics,
therefore a natural question is: What is the Hilbert polynomial of a twisted cubic?

2For α P R is defined the reflection associated to α as rα : I1,6 // I1,6, via ν
� // ν ` pν, αqα, [Dol12]
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Lemma 2.33. A twisted cubic has Hilbert polynomial 3d` 1.

Proof. Let C Ă P3 be a twisted cubic, hence C is isomorphic to P1 via the Veronese embedding
of degree 3, which implies that C is embedded with degree 3, therefore OCp1q » OP1p3q and
dimK H0pC,OCpdqq “ dimK H0pP1,OP1p3dqq “ 3d`1. Additionally, we haveH ipC,OCpdqq “ 0

for d large enough and i ě 1. □

Let S Ă P3 be a smooth cubic surface and consider the Hilbert schemes H3d`1pP3q,H3d`1pSq

parameterising curves with Hilbert polynomial 3d`1 in P3 and S, respectively. By Lemma 2.33,
the twisted cubics are part of this schemes and it was proved by Piene and Schlessinger [PS85]
that the Hilbert scheme H3d`1pP3q consists of two irreducible components H0, H1 of dimensions
12 and 15 respectively. The irreducible component of dimension 12 contains all the twisted
cubics of P3. From now on we denote HgtcpP3q “ H0 and we will call any element in HgtcpP3q

a generalised twisted cubic. For a smooth cubic surface S, let HgtcpSq be the scheme theoretic
intersection of H3d`1pSq and HgtcpP3q in H3d`1pP3q, which is the variety parameterising the
generalised twisted cubics contained in S. Finally, following the notation of Popov [Pop18], let
the LLSvS variety ZpSq be HgtcpSq modulo linear equivalence.

Question 2.34. Does a beautiful formula of degree 4 for smooth cubic surfaces S with its LLSvS
variety ZpSq exist? If so, what are the possible beautiful formulae of this form?

With the aim of answering this question, it is necessary to understand the structure of the
LLSvS variety ZpSq. The following discussion follows closely [Leh+17].

Let S Ă P3 be a normal cubic surface with at most rational double point singularities over
an algebraically closed field K and let σ : S̃ //S be its minimal resolution. In particular, S̃ is
a weak Del Pezzo surface, σ is crepant, i.e. it preserves the canonical bundle, and as proved in
Lemma 5.23 we have σ˚OS̃ “ OS , [Dol12].

Since S̃ P SmProj is a surface, the Picard group of S̃ equipped with the intersecting form, cf.
Definition 5.15, can be treated as a lattice, see [Dol12]. Analogously to Remark 2.31, we define
the root system R and the Weyl group W associated to such lattice. The irreducible components
E1, . . . , Em of the exceptional curves π´1ppq over all singularities p P S are isomorphic to P1 and
form a basis of a subset of the root system R0 Ă R, we call them effective roots, see Lemma 5.27.

Let WpR0q denote the subgroup of the Weyl group W generated by the reflections associated
to the effective roots. The root system R decomposes into finitely many orbits with respect to
the action of WpR0q, [Dol12]. Additionally, in every orbit B Ă R can be found unique roots
α`
B, α

´
B characterised by the property ˘α˘

B.Ei ď 0 for all i, which we will refer to as the maximal
respectively minimal root of the orbit B, [Dol12]. Given a singularity p P S, let Rp Ă R be the
irreducible subsystem generated by the exceptional curves in the fibre of p. It can be proved
that Rp is an orbit under the action of WpR0q on R, [Dol12].
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Using this information, we will relate the orbits of R under the action of WpR0q with P2-
families of generalised twisted cubics in S. In particular, we will prove, following [Leh+17],
that for smooth cubic surfaces S we have HgtcpSqred “ R ˆ P2, with R as in Remark 2.31.

Lemma 2.35. Let C Ă S be a generalised twisted cubic, and let C̃ “ σ´1pCq Ă S̃ denote the
scheme theoretic inverse image. Then C̃ is an effective divisor such that the class of C̃ `KS̃ is
a root in R. Moreover, σ˚OC̃ “ OC .

Proof. Let I Ă OS and Ĩ Ă OS̃ be the ideal sheaves of C and C̃ respectively, so that we have
σ˚I // // Ĩ and I �

� // σ˚Ĩ by definition of inverse image. For any singular point p P S, there is an
open neighbourhood U and an epimorphism On

U
// // I|U . This induces a surjective morphism

On
V

// σ˚I|V // Ĩ|V on a neighbourhood V “ σ´1pUq of the fibre σ´1ppq. Since fibres of σ are
at most 1-dimensional, by the theorem on formal functions all second and higher direct images of
coherent sheaves on S̃ vanish, hence pushing down the epimorphism On|V // Ĩ|V along σ we get
the epimorphism pR1σ˚OS̃qn|U //R1σ˚Ĩ|U . By definition of rational singularities, R1σ˚OS̃ “ 0

and so R1σ˚Ĩ “ 0. In consequence, the rows of the following commutative diagram are exact,
α is injective and β is surjective.

0 // σ˚Ĩ // σ˚OS̃
// σ˚OC̃

// 0

0 // I

α

OO

// OS
// OC

β

OO

// 0.

If C has no embedded points, β is an isomorphism everywhere. If β is an isomorphism,
then C̃ cannot have embedded points, otherwise they would show up in σ˚OC̃ . Hence, C̃ is
an effective divisor. Assume now that C has an embedded point p, then C is a non-Cohen–
Macaulay curve, since being Cohen–Macaulay and having no embedded points are equivalent
for locally Noetherian schemes of dimension ď 1. We also have that p is a singular point
of S because C is non-Cohen–Macaulay [Leh+17], say with ideal sheaf m, and there exists a
hyperplane section H through p such that I “ OSp´Hq. Let Zp be the fundamental cycle
supported on the exceptional fibre σ´1ppq, see Appendix 5.4. By Artin’s Theorem 4 in [Art66],
pσ˚mqOS̃ “ OS̃p´Zpq and σ˚OS̃p´Zpq “ m, so that Ĩ “ OS̃p´Zp ´ σ˚Hq and σ˚Ĩ “ I. Then
C̃ is always an effective divisor and σ˚OC̃ “ OC .
Since Riσ˚OS̃ “ Riσ˚Ĩ “ 0 for i ě 1, one gets Riσ˚OC̃ “ 0 for i ě 1. We also have
χpOC̃q “ χpOCq “ 1 because C has arithmetic genus 0 by definition. Furthermore, we have
C̃.p´KS̃q “ C.p´KSq “ 3, which implies via the adjunction formula C̃2 “ 1. Therefore,
pC̃ `KS̃q.KS̃ “ 0 and pC̃ `KS̃q2 “ ´2, hence C̃ `KS̃ is a root by definition. □

Lemma 2.36. Let α be a maximal root and let C̃ P |α ´ KS̃ |. Then C “ σpC̃q Ă S is a
subscheme with Hilbert polynomial 3n` 1.

Proof. Take direct images of the short exact sequence 0 //OS̃p´C̃q //OS̃
//OC̃

// 0 to get
0 // I //OS

// σ˚OC̃
//R1σ˚OS̃p´C̃q // 0, where I is the ideal sheaf of C, and all other

higher direct image sheaves vanish. Since C̃ P |α ´ KS̃ | and α is maximal, then Ei.p´C̃q “

Ei.p´α`KS̃q ě 0. Hence, the restriction of OS̃p´C̃q to any exceptional curve has non-negative
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degree. For a singularity p P S, let Zp be the fundamental cycle supported on σ´1ppq, see
Appendix 5.4. Theorem 4 and Lemma 5 in [Art66] yield H1pZp,OS̃p´C̃ ´ mZpqq “ 0 for all
m ě 0 and for all singularities p P S. Thus, by applying the theorem on formal functions
and using that non-singular points have finite fibres, we obtain R1σ˚pOS̃p´C̃qq “ 0, hence
σ˚OC̃ “ OC . This implies

χpOCp´nKSqq “ χpOC̃p´nKS̃qq “ χpOS̃p´nKS̃qq ´ χpOS̃p´C̃ ´ nKS̃qq,

hence by applying the Riemann–Roch formula twice we have

χpOCp´nKSqq “
1

2

`

npn` 1qK2
S̃

´ p´C̃ ´ nKS̃qp´C̃ ´ pn` 1qKS̃q
˘

“ 3n` 1.

Hence, the Hilbert polynomial of C̃ is 3n` 1 as claimed. □

Lemma 2.37 ([Leh+17]). Let α´ be a minimal root. Then the linear system |α´ ´KS̃ | is two
dimensional and base point free, i.e. |α´ ´KS̃ | » P2.

Lemma 2.38. Let α P R´R0 and let α` and α´ denote the maximal and the minimal root of
its orbit respectively. Then,

(i) The linear system |α ´KS̃ | is independent of the choice of α in its WpR0q-orbit.
(ii) The image C “ σpC̃q of a generic curve C̃ P |α ´KS̃ | is smooth.
(iii) For every curve C̃ P |α´ ´KS̃ |, we have σpC̃q is a generalised twisted cubic.

Proof. Assume that α´ ‰ α` and let β be any root from the orbit of α. Since β is not a
minimal root, there exists an effective root Ei with β.Ei ă 0. Hence, Ei is one of the irreducible
components of β, which leave us only with two possible intersection numbers, either β.Ei “ ´1

or β.Ei “ ´2. Since β.Ei “ ´2 implies β “ Ei, then we must have β.Ei “ ´1. Let β1 “ β´Ei

be the root obtained by reflecting β in Ei. We have following short exact sequence:

0 // OS̃pβ1 ´KS̃q // OS̃pβ ´KS̃q // OS̃pβ ´KS̃q|Ei
// 0.

In Lemma 5.27 we proved Ei » P1. Since pβ´KS̃q.Ei “ ´1, we have Opβ´KS̃q|Ei “ OEip´1q,
which has trivial cohomology. This implies hipOpβ1 ´ KS̃qq “ hipOpβ ´ KS̃qq, hence we have
an isomorphism of linear systems |Opβ1 ´ KS̃q| » |Opβ ´ KS̃q|. Thus, given C̃ P |Opβ ´ KS̃q|,
we have the short exact sequence:

0 // OS̃p´C̃ ´ Eiq // OS̃p´C̃q // OEip´1q // 0.

In particular, since OEip´1q has no non-trivial cohomology, σ˚OS̃p´C̃´Eiq “ σ˚OS̃p´C̃q Ă

OS define the same image curve σpC̃ ´ Eiq “ σpC̃q. Replacing β by β1 subtracts a fixed
component from the linear system |OS̃pβ ´ KS̃q|. Iterations of this step lead in finitely many
steps to the minimal root ´α. Hence, all roots in the WpR0q-orbit of α define isomorphic linear
systems and the same family of subschemes in S. The same procedure works for α´ “ α`.

Take α “ α´, then a generic curve in C̃ P |α´ ´ KS̃ | is smooth by Lemma 2.37. Let p P S

be a singularity and recall that Rp Ă R0 Ă R is the irreducible subsystem generated by the
exceptional curves in the fibre of p, which is an orbit under the action of WpR0q on R. The
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preimage σ´1ppq corresponds to the maximal root α`
Rp

with α´.α`
Rp

P t0, 1u. Hence, C “ σpC̃q

does not contain p or is smooth at p. Since σ is birational outside of the singular locus of S,
the curve C “ σpC̃q is smooth.
Finally, taking α “ α`, Lemma 2.36 implies that for any C̃ P |α´ ´ KS̃ | we have σpC̃q Ă S is
a generalised twisted cubic. □

Theorem 2.39. Let S be a normal cubic surface with at most rational double point singularities
over an algebraically closed field K. Then, we have

HgtcpSqred »
ğ

BPR{WpR0q

|OS̃pα´
B ´KS̃q| » pR{WpR0qq ˆ P2.

In particular, if S is a smooth cubic surface over a field of characteristic zero, the geometric
points of ZpSq correspond to the roots R Ă NSpSq as in Remark 2.31. □

3. Obstructions from representation theory via the Gillet–Soulé motivic
realisation

We are interested in finding conditions for the possible beautiful formulae for smooth cubic
surfaces S Ă P3. In order to achieve this, we will consider the image of its symmetric prod-
ucts rSpnqs, its associated Fano variety of lines F pSq and its associated LLSvS variety ZpSq

under the Gillet–Soulé motivic realisation and find the possible formulae relating this classes in
K0pChowQq. We require some technical results, namely Theorems 3.3 and 3.7, that allow us to
compare beautiful formulae and formulae in the Grothendieck ring of Chow motives K0pChowQq

via Corollary 3.8. This section is mainly based on [Pop18] and [SP11].

One of the main tools that we will be using to restrict the form of beautiful formulae comes from
the theory of Galois representations. By a Galois representation of the Galois extension L{K we
mean a discrete, finite dimensional representation of the Galois group GalpL{Kq over Q, where
a discrete representation is a group homomorphism GalpL{Kq // GLpV q being continuous for
GLpV q equipped with the discrete topology and GalpL{Kq with the profinite topology. We
denote the category of Galois representations of L{K by ReppGalpL{Kqq. Morphisms are given
by morphisms of representations, namely morphisms commuting with the action of the Galois
group. We fix the notation GalK “ GalpK̄{Kq for the absolute Galois group.

Denote by Chow0
Q Ă ChowQ the subcategory of zero dimensional Chow motives with objects

M b Ln, where M P ChowArt
Q is an Artin motive and n P Z, see Appendix 5.2. Observe

that for any Chow motive pX, id, nq P Chow0
Q, the geometric points XpK̄q come with a GalK-

action. Thus, by assigning a basis vector bx P QXpK̄q to x P XpK̄q, we obtain a represen-
tation GalK // GLpQXpK̄qq. Denote this representation by ReppXq “ RepphpXqq. More-
over, Rep: Chow0

Q
// ReppGalKq defines a functor: Let X,Y P SmProj be zero dimensional

varieties and let f P Corr0pX,Y q be a correspondence. By base changing we get a cycle
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fK̄ P Corr0pXK̄ , YK̄q. Hence, we can write uniquely

fK̄ “
ÿ

xPXpK̄q,yPY pK̄q

αx,yrxˆ ys,

for αx,y P Q. Additionally, we have HomChowQphpXq, hpY qq “ Corr0pX,Y q, hence for any mor-
phism ϕ : hpXq // hpY q we define Reppϕq : ReppXq // ReppY q to be given by bx � //

ř

y αx,yby.
This morphism commutes with the action of GalK because fK̄ comes from f P Corr0pX,Y q

and GalK leaves K-points invariant, therefore it leaves f invariant and so does with fK̄ be-
cause Corr0pX,Y q // Corr0pXK̄ , YK̄q is injective. It can be verified that this definition satisfies
Reppϕ ˝ ψq “ Reppϕq ˝ Reppψq.

Lemma 3.1. Let ρ : GalpL{Kq // GLpV q be a Galois representation of an infinite Galois
extension L{K. Then there exists a finite Galois subextension K 1{K such that the action of
GalpL{Kq on V factors through GalpK 1{Kq.

Proof. Let G be the image of GalpL{Kq under the representation ρ. By definition of a Galois
representation, GalpL{Kq is profinite and GLpV q is discrete, hence G is compact and discrete,
so it is finite. The kernel of the representation Kerpρq is a subgroup of GalpL{Kq, which
corresponds to a Galois subextension K 1{K. Thus, GalpK 1{Kq “ GalpL{Kq{GalpL{K 1q “ G

is finite and so is the field extension K 1{K. □

Lemma 3.2. The functor Rep induces an equivalence of categories between ChowArt
Q and

ReppGalKq.

Proof. The functor Rep defined above induces a functor Rep: ChowArt
Q

// ReppGalKq, since
ChowArt

Q is the pseudo-abelian hull of the category ChowQ generated by hpXq with X P SmProj

zero dimensional. Firstly, let us show that

HomChowQphpXq, hpY qq // HomReppGalKqpReppXq,ReppY qq

is a bijection for all zero dimensional varieties X,Y . The injectivity follows from the injectivity
of the base change Corr0KpX,Y q // Corr0

K̄
pXK̄ , YK̄q.

For the surjectivity we note that any representation ϕ P ReppGalKq is characterised by a
matrix A “ pax,yqxPXK̄ ,yPYK̄

with coefficients in Q, where ϕpbxq “ ax,yby. Then we define
f 1 “

ř

xPXpK̄q,yPY pK̄q αx,yrx ˆ ys P Corr0pXK̄ , YK̄q. This cycle descends to Corr0pX,Y q since ϕ
commutes with the action of GalK .
We prove now that the functor Rep is essentially surjective. Let ϕ : GalK // GLpV q be a
Galois representation. By Lemma 3.1, ϕ is a Galois representation of a finite Galois extension
K 1{K. Since we are working in characteristic zero, Maschke’s theorem allows us to assume that
ϕ is irreducible, hence ϕ is a direct summand of the regular representation QGalpK1{Kq, [FH91].

As GalK-sets GalpK 1{Kq and SpecpK 1qpK̄q “ HomKpK 1, K̄q are isomorphic3, thus the regu-
lar representation is RepphpSpecpK 1qqq. Since Rep is fully faithful, ChowArt

Q is pseudo-abelian

3Note that since K 1
{K is a Galois extension, for g P GalK we have g|K1 P GalpK 1

{Kq, which allows as to
consider HomKpK 1, K̄q as a GalK-set in the natural form. Then the isomorphism is induced by the inclusion
K 1

Ă K̄.
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and ϕ is a summand of QGalpK1{Kq, hence it can be written as a kernel of a morphism with
domain QGalpK1{Kq, then ϕ lies in the essential image of Rep. □

For a discrete group G, let ReppGqg be the ring of graded rational finite dimensional repre-
sentations of G such that the action of G factors through a finite group. The Galois group GalK
acts on the lines contained in SK̄ , hence it defines a homomorphism to the group of automor-
phisms of lines GalK // AutpIq » W, where W denotes the Weyl group of type E6, see Remark
2.31. Denote the image of the above morphism by W0, thus we have ReppW0qg

� � // ReppGalkqg

induced by the surjection. Additionally, we have a surjection ReppWqg // // ReppW0qg.

Theorem 3.3. The Grothendieck ring of zero dimensional motives K0pChow0
Qq Ă K0pChowQq

is isomorphic to ReppGalKqg, see Definition 5.12.

Proof. The equivalence of categories from Proposition 3.2 extends to an equivalence of categories
between Chow0

Q and the category of graded Galois representations of GalK , which is semi-
simple. We have that K0pChow0

Qq Ă K0pMotnumq [MNP13], where Motnum is the semi-simple
category of motives modulo numerical equivalence. Hence, K0pChow0

Qq and ReppGalKqg are
isomorphic. □

Remark 3.4. Representation theory of W over Q is the same as representation theory over C.
Given any irreducible C-representation ϕ, the representation ϕ‘mϕ , where mϕ is the Schur index
of ϕ, is defined over Q since all the characters in Table 1 are rational, [CR66]. Additionally, for
representations of the Weyl group W it was proved in [Ben71] that the Schur index is 1.

Let us now apply 3.3 to obtain obstructions to the form of beautiful formulae for smooth
cubic surfaces S by means of representation theory. For this we first need to study the structure
of hpSq.

Lemma 3.5. Let S be a smooth cubic surface. Then the motive of S is given by

hpSq » 1 ‘ pV b Lq ‘ L2,

where V is the Artin motive corresponding to the Galois representation NSpSq b Q under the
equivalence of categories proved in Lemma 3.2.

Proof. In [KMP07] one has the following decomposition of the motive of a smooth projective
surface:

hpSq “ 1 ‘ ppPic0SqredpKq b Lq ‘ pNSpSq b Lq ‘ pT pSq b L2q ‘ pAlbSpKq b L2q ‘ L2,

where Pic0S denotes the Picard variety of S [Gro61], T pSq “ KernpZ2pSq0 // AlbSpKqq the
Albanese–Jacobi kernel, Z2pSq0 the abelian group generated by of 2-cycles of S being numeri-
cally trivial and AlbS the Albanese variety of S.

From Lemma 4.1.1. in [Huy23] and Proposition 5.10 in [Kle05] follows that pPic0SqredpKq bL
vanish. Since the Albanese variety is the conjugate of the Picard variety [Gro61], we also
have that AlbSpKq b L2 vanish. Additionally, we have T pSq “ Z2pSq0 “ 0, since zero-cycles
α P Z0pSq “ Z2pSq in smooth projective surfaces are numerically trivial if and only if they
are algebraically trivial [ACV17], and any zero-cycle in S is algebraically trivial because S is
connected. □
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Remark 3.6. Note that we are using the same notation for elements in different rings, namely
L “ rA1s P K0pVq and L “ pSpecpKq, id,´1q P K0pChowQq. However, under the Gillet–Soulé
motivic realisation we have rP1s P K0pVq

� // hpP1q P K0pChowQq. Thus, Example 5.11 implies
L P K0pVq

� //L P K0pChowQq.

Theorem 3.7. Let S be a smooth cubic surface. Then the classes of the motives associated to
Spnq, F pSq, ZpSq lie in the ring of graded representations ReppW0qg.

Proof. The geometric points of F pSq and ZpSq correspond to lines and roots in NSpSq re-
spectively, cf. Remark 2.30 and Theorem 2.39, then hpF pSqq and hpZpSqq are Artin motives.
Finally, it was proved in [RN98] that hpSymnXq “ Symn hpXq. Thus, by Lemma 3.5 follows
that hpSpnqq is a direct sum of zero dimensional motives. Since the action of the Galois group
GalK on the associated Galois modules factors through W0, we obtain the claimed result. □

Corollary 3.8. Any formula in the Grothendieck ring of varieties for smooth cubic surfaces
with their Fano variety F pSq or their LLSvS variety ZpSq descends via the Gillet–Soulé mo-
tivic realisation to a formula in the ring ReppW0,Cqg. Moreover, any formula in ReppW0,Cqg

induces a formula in ReppW,Cqg.

Proof. By Theorems 3.3 and 3.7, the images of Spnq, F pSq, ZpSq P K0pVq under the Gillet–Soulé
motivic realisation lie in ReppW0qg » ReppW0,Cqg, hence the image of a beautiful formula
along the Gillet–Soulé motivic realisation is a formula in ReppW0,Cqg. Furthermore, we obtain
a formula in ReppW,Cqg via the surjection ReppW,Cqg // // ReppW0,Cqg. □

Lemma 3.9 ([Pop18]). Let V P ChowArt
Q be the Artin motive corresponding to the Galois

representation NSpSq b Q under the equivalence of categories proved in Lemma 3.2. Then the
class of this Artin motive rV s P ReppW,Cqg has the following decomposition in irreducible
representations of W, see Table 1.

rV s “ 1 ` χ3.

Proof. By definition we have rV s “ NSpSq bC P ReppW,Cqg. The symmetric group S6 acts on
NSpSq by permutation of its generators E1, . . . , E6, leaving the canonical class KS “ ´3E0 `

E1 ` . . .`E6 invariant. Hence, S6 Ă W. By studying the characters of representations of S6 we
will determine the representation of V . The irreducible representations of W that could appear
in the decomposition of NSpSq b C are of dimension ď 7 because NSpSq b C has dimension 7,
hence by Table 1 the possible irreducible representations are χ1, χ2, χ3, χ4.
Additionally, the canonical class KS is invariant under the action of W, therefore rV s “ 1 `

R, with R a 6-dimensional representation. In order to understand R, we consider R as a
representation of S6 and analyse how R acts on KK

S . As proved in Lemma 8.2.6 in [Dol12], the
vectors E0 ´ E1 ´ E2 ´ E3 and Ei´1 ´ Ei for i P t2, . . . , 6u form a basis of KK

S , which implies
that R can be decompose into two irreducible representations, one of them corresponding to
the vector space xE0 ´ E1 ´ E2 ´ E3y and the second one corresponding to the vector space
generated by Ei´1 ´ Ei for i P t2, . . . , 6u. Thus, R can be decomposed into an irreducible
representation of dimension 1 and one of dimension 5, in particular R is not a sum of 1-
dimensional representations. Since, by Table 1, χ1, χ2 are 1-dimensional representations and R
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can not be decomposed into 1-dimensional irreducible representations, they don’t appear in rV s.
The representation R is permutational in tE1, . . . , E6u. The trace of an element g P S6 equals
the elements that are left invariant, hence a transposition has trace 4. Since transpositions lie
in a conjugacy class of W and the character is invariant under conjugation, we need to find a
conjugacy class of χ3 or χ4 with character 4. By Table 1, only χ3 has an irreducible class with
character 4, hence R “ χ3. □

Lemma 3.10. For any smooth cubic surface S, the following classes of zero dimensional motives
have the decomposition in irreducible representations of the Weyl group W presented below, see
Table 1.

(i) rSs “ 1 ` p1 ` χ3qL ` L2,
(ii) rS2s “ 1 ` p2 ` 2χ3qL ` p4 ` 2χ3 ` χ9 ` χ10qL2 ` p2 ` 2χ3qL3 ` L4,
(iii) rSp2qs “ 1 ` p1 ` χ3qL ` p3 ` χ3 ` χ10qL2 ` p1 ` χ3qL3 ` L4,
(iv) rF pSqs “ 1 ` χ3 ` χ10.

Proof.
(i) Follows from Lemma 3.5 and Lemma 3.9.
(ii) Follows from the decomposition of rSs and χ2

3 “ 1 ` χ9 ` χ10, which can be verified by
comparing characters, see Table 1.

(iii) For a representation V , we define the n-th symmetric product of the representation as
Symn V . Given a direct product of vector spaces A ‘ B, it holds Sym2pA ‘ Bq “ Sym2pAq ‘

AbB ‘ Sym2pBq. Hence, from the representation of rSs follows:

(3.1) Sym2prSsq “ 1 ` p1 ` χ3qL ` p2 ` χ3 ` Sym2 χ3qL2 ` p1 ` χ3qL3 ` L4.

Additionally, for the character of χpgq “ χSym2
χk

pgq holds χpgq “ 1
2pχkpgq2`χkpg2qq, [FH91]. In

Table 1 can be found in the third, fourth and fifth lines the second, third and fifth powers of the
conjugacy classes respectively. Explicit calculations using (3.1) show that Sym2 χ3 “ 1 ` χ10,
which implies the claimed result.

(iv) Follows from the decomposition of the class of the symmetric power rSp2qs and the X-
F pXq relation, see Example 2.17. □

Corollary 3.11. There is no homogeneous beautiful formula of degree 2 for smooth cubic sur-
faces S.

Proof. By Corollary 3.8, a homogeneous formula of degree 2 implies a formula in ReppW,Cqg

relating the classes. rSs, rS2s, rSp2qs. However, by Lemma 3.10, the representation of rSs does
not have summands χ9 and χ10 but the other two classes have the term χ10 in their decom-
position, which leaves us with the only possibility rS2s ´ rSp2qs “ rSs. This formula does not
hold, since in the left hand side we have the term χ9L2, which does not appear on the right
hand side. Since there is no such formula for generic smooth cubic surfaces, we have shown the
statement. □
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Corollary 3.12 ([Pop18]). The X-F pXq relation is the unique beautiful formula of degree 2

for smooth cubic surfaces S with the Fano variety F pSq.

Proof. Firstly, by Theorem 2.14 the X-F pXq is a beautiful formula. Additionally, any beautiful
formula involving rF pSqs have as coefficient of rF pSqs a polynomial in L divisible by L2, since
χ10 is the coefficient of L2 in the decomposition of rS2s and rSp2qs.
Assume there is another beautiful formula of degree 2 involving rF pSqs. Let ppLqL2 be the
coefficient of rF pSqs. Hence, by multiplying the S ´ F pSq relation by ppLq and subtracting,
we obtain an homogeneous beautiful formula of degree 2, which is not possible by Corollary
3.11. □

As proved in 2.39, for smooth cubic surfaces we have that the geometric points of ZpSq

correspond to the set of roots R Ă NSpSq, cf. Remark 2.31. Using this description of ZpSq and
SageMath, Popov in [Pop18] obtained explicit representatives for each conjugacy class of W in
terms of simple reflections and calculated traces explicitly to determine following decomposition
in irreducible representations for the class of ZpSq.

Lemma 3.13 ([Pop18]). The 72-dimensional representation rZpSqs P ReppW,Cqg has the fol-
lowing decomposition in irreducible representations, see Table 1.

rZpSqs “ 1 ` χ3 ` χ8 ` χ10 ` χ16.

Lemma 3.14. For any smooth cubic surface S, the following classes of zero dimensional motives
have the decomposition in irreducible representations of the Weyl group W presented below, see
Table 1.

(i) rSp3qs “ 1` p1`χ3qL` p3`χ3 `χ10qL2 ` p3` 3χ3 ` 2χ10 `χ16qL3 ` p3`χ3 `χ10qL4 `

p1 ` χ3qL5 ` L6,
(ii) rS ˆ Sp2qs “ 1 ` p2 ` 2χ3qL ` p6 ` 3χ3 ` χ9 ` 2χ10qL2 ` p6 ` 7χ3 ` χ9 ` 3χ10 ` χ16 `

χ20qL3 ` p6 ` 3χ3 ` χ9 ` 2χ10qL4 ` 2p1 ` χ3qL5 ` L6,
(iii) rS3s “ 1 ` p3 ` 3χ3qL ` p9 ` 6χ3 ` 3χ9 ` 3χ10qL2 ` p10 ` 12χ3 ` 3χ9 ` 4χ10 ` χ12 `

χ16 ` 2χ20qL3 ` p9 ` 6χ3 ` 3χ9 ` 3χ10qL4 ` p1 ` χ3qL5 ` L6.

Proof. Follows as in Lemma 3.10. □

Corollary 3.15. There is no beautiful formula of degree 3 for smooth cubic surfaces S with the
Fano variety of lines F pSq, or the LLSvS variety ZpSq.

Proof. Any beautiful formula for S implies a formula in ReppW,Cqg by Corollary 3.8. The
unique class of degree ď 3 having the irreducible summand χ12 is rS3s and the unique class
having the summand χ8 is rZpSqs, hence they cannot appear in a formula of degree 3. By
excluding these classes, the unique class having the summand χ20 is rS ˆSp2qs, hence it cannot
appear in the formula. Now, the only possible class of degree 3 that can appear is rSp3qs,
however it has the irreducible summand χ16, which does not appear in any class of degree ď 2

or F pSq. Hence, there is no formula of degree 3 involving ZpSq or F pSq. Since there is no such
formula for a generic smooth cubic surface, the statement follows. □
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Lemma 3.16. For any smooth cubic surface S, the following classes of zero dimensional motives
have the decomposition in irreducible representations of the Weyl group W presented below, see
Table 1.

(i) rSp4qs “ 1 ` p1 ` χ3qL ` p3 ` χ3 ` χ10qL2 ` p3 ` 3χ3 ` 2χ10 ` χ16qL3 ` p6 ` 4χ3 ` χ8 `

5χ10 ` χ16 ` χ20qL4 ` p3 ` 3χ3 ` 2χ10 ` χ16qL5 ` p3 ` χ3 ` χ10qL6 ` p1 ` χ3qL7 ` L8,
(ii) rS ˆ Sp3qs “ 1 ` p2 ` 2χ3qL ` p6 ` 3χ3 ` χ9 ` 2χ10qL2 ` p8 ` 9χ3 ` χ9 ` 5χ10 ` 2χ16 `

χ20qL3 ` p12` 10χ3 `χ8 ` 3χ9 ` 10χ10 ` 3χ16 ` 3χ20 `χ23qL4 ` p8` 9χ3 `χ9 ` 5χ10 ` 2χ16 `

χ20qL5 ` p6 ` 3χ3 ` χ9 ` 2χ10qL6 ` p2 ` 2χ3qL7 ` L8,
(iii) rS4s “ 1 ` p4χ3 ` 4qL ` p12χ3 ` 6χ9 ` 6χ10 ` 16qL2 ` p36χ3 ` 12χ9 ` 16χ10 ` 4χ12 `

4χ16 ` 8χ20 ` 28qL3 ` p41χ3 ` χ7 ` χ8 ` 24χ9 ` 29χ10 ` 4χ12 ` 2χ13 ` 7χ16 ` 2χ17 ` 12χ20 `

3χ23 `3χ25 `40qL4 ` p36χ3 `12χ9 `16χ10 `4χ12 `4χ16 `8χ20 `28qL5 ` p12χ3 `6χ9 `6χ10 `

16qL6 ` p4χ3 ` 4qL7 ` L8,
(iv) rS2 ˆ Sp2qs “ 1 ` p2χ3 ` 2qL ` p4χ3 ` χ9 ` 3χ10 ` 8qL2 ` p12χ3 ` 2χ9 ` 6χ10 ` 2χ16 `

2χ20 ` 10qL3 ` p13χ3 ` χ8 ` 4χ9 ` 13χ10 ` χ13 ` 3χ16 ` χ17 ` 4χ20 ` χ23 ` 17qL4 ` p12χ3 `

2χ9 ` 6χ10 ` 2χ16 ` 2χ20 ` 10qL5 ` p4χ3 ` χ9 ` 3χ10 ` 8qL6 ` p2χ3 ` 2qL7 ` L8,
(v) rS2ˆSp2qs “ 1`p3χ3`3qL`p7χ3`3χ9`4χ20`11qL2`p21χ3`5χ9`10χ10`χ12`3χ16`

4χ20 `17qL3 `p23χ3 `χ8 `11χ9 `19χ10 `χ12 `χ13 `5χ16 `χ17 `7χ20 `2χ23q`χ25 `25qL4 `

p21χ3 `5χ9 `10χ10 `χ12 `3χ16 `4χ20 `17qL5 `p7χ3 `3χ9 `4χ10 `11qL16 `p3χ3 `3qL7 `L8.

Proof. Follows as in Lemma 3.10. □

Corollary 3.17. There is no homogeneous beautiful formula of degree 4 for smooth cubic sur-
faces S.

Proof. Similar as in Corollaries 3.11, 3.12 and 3.15 we can show that there is no homogeneous
formula of degree 4 by comparing coefficients in the representations of the classes listed in
Lemma 3.16. □

Corollary 3.18 ([Pop18]). The only possible form up to multiplication of a beautiful formula
of degree 4 for smooth cubic surfaces S with their LLSvS variety ZpSq, is the following relation.

L4rZpSqs “ rSp4qs ´ p1 ´ L ` L2qrSp3qs ´ LrSsrSp2qs ` pL ` L2 ` L3qrS2s ´ 2L2rSp2qs

´ pL ´ L2 ` L3 ´ L4 ` L5qrSs ` pL2 ` L4 ` L6q.
(3.2)

Proof. A beautiful formula of degree 4 induces a formula in ReppW,Cqg by Corollary 3.8. By
comparing the irreducible decomposition of the classes involved, we conclude that the formula
(3.2) holds in ReppW,Cqg.
Note that χ8 appears in classes of symmetric powers of S only as coefficient of L4. Hence, in
any beautiful formula with rZpSqs, the coefficient of rZpSqs is a polynomial in L divisible by
L4. Assume that there is a beautiful formula of degree 4 with rZpSqs different to (3.2). Say
that the coefficient of rZpSqs in such formula is ppLqL4 with ppLq P CrLs, thus by multiplying
(3.2) with ppLq and subtracting the two formulae we obtain an homogeneous formula of degree
4, contradicting Corollary 3.17. □
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4. Obstructions from stable birational geometry via the stable birational
realisation

Our goal in this section is to find obstructions by means of the stable birational realisation to
the possible forms that a beautiful formula for smooth cubic surfaces S with their LLSvS vari-
ety ZpSq can have. We have proved via the Gillet–Soulé motivic realisation, following [Pop18],
that the only possible homogeneous beautiful formula for smooth cubic surfaces S of degree 4 is
(3.2), which holds in the Grothendieck ring of Chow motives K0pChowQq. However, as we will
prove in Corollary 4.6, following [Pop18], this formula is not a beautiful formula, which implies
that there is no beautiful formula of degree 4 for smooth cubic surfaces with their LLSvS variety.

Let K be an algebraically closed field of characteristic zero. Any smooth cubic surface over
K is isomorphic to a blow-up of P2

K in 6 distinct points by Lemma 2.28, thus rSs “ 1`7L`L2.
Additionally, by Theorem 2.39 we can write the class rZpSqs as a polynomial in L. Thus, there
are various formulae relating these two classes. The structure of smooth cubic surfaces over
non-algebraically closed fields is more interesting, therefore we will explore this direction.

Lemma 4.1 (Lang–Nishimura Lemma, [Lan54], [Nis55]). Ler f : X // Y be a rational map of
K-schemes with Y proper. If X has a smooth K-point, then Y has a K-point.

Proof. After blowing-up X, we obtain a morphism X̃ // Y , where X̃ //X is a finite sequence
of blow-ups with smooth centres, [Hir64]. The fibre over the smooth point is rational, hence X̃
has a K-point, which is mapped to a K-point in Y . □

Lemma 4.2. Let S be a smooth cubic surface over K, then Sr3spKq ‰ H.

Proof. Consider a K-line not contained in S. Then, the intersection with S is defined over K
and is a subscheme of length 3, [Har77]. This defines a a K-point in Sr3s, see Appendix 5.5. □

Lemma 4.3. Let S be a smooth cubic surface over K and let n P N be prime to 3. If SpnqpKq ‰

H, then there exists a field extension L{K of degree prime to 3 such that SpLq ‰ H.

Proof. Given a K-point Spnq, we can find a K-point in Srns since the fibres of the Hilbert–Chow
morphism are rational, see Appendix 5.5. A K-point of Srns is a closed subscheme of dimension
zero Z Ă S and length n supported at finitely many points y1, . . . , yd with d ď n.

Thus, lengthpOZ,yiq “ rkpyiq : KsmultyipZyiq and n “ lengthpZq “
ř

1ďiďd lengthpOZ,yiq,
[EH00]. Assume rkpyiq : Ks is divisible by 3 for all 1 ď i ď d, then n is not prime to 3, which
contradicts the hypothesis. In consequence, there exists a yi such that rkpyiq : Ks is prime to
3. Consider yi Ă Z Ă S as an pL “ kpyiqq-point. □

Lemma 4.4. Let n P N prime to 3. There exists a smooth cubic surface S over K “ Q (or
K “ Qp) such that Spnq is not stably birationally equivalent to Sp3q.

Proof. In [CM04] it was proved that there exists a smooth cubic surface S over K “ Q (or
K “ Qp) with no L-points for any field extension L{Q (or L{Qp) of degree prime to 3.
Assume that Spnq and Sp3q are stably birationally equivalent, thus there exist n,m P Zě0 and a
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rational map Sr3s ˆ Pn //Sp3q ˆ Pn 99K Spnq ˆ Pm, where the first morphism is induced by the
Hibert–Chow morphism. By Lemma 4.2, we have Sr3spKq ‰ H, which implies SpnqpKq ‰ H via
Lemma 4.1. From Lemma 4.3 follows that there exists a field extension L{K of degree prime
to 3 with SpLq ‰ H, which contradicts the result proved in [CM04]. □

Theorem 4.5 ([Pop18]). There is no beautiful formula in K0pVQq (or K0pVQpq) for smooth
cubic surfaces S of the form:

(4.1) rSp3qs “
ÿ

i

rSpni
1q ˆ ¨ ¨ ¨ ˆ S

pni
ki

q
s (mod L),

if for every i there is an nij prime to 3.

Proof. If (4.1) is a beautiful formula, then by Corollary 2.24 Sp3q is stably birationally equivalent
to Spni

1q ˆ ¨ ¨ ¨ ˆ S
pni

ki
q for some i, which contradicts Lemma 4.4. □

Corollary 4.6. The formula (3.2) for smooth cubic surfaces S is not a beautiful formula in
K0pVq for K “ Q (or K “ Qp). In particular, it is not a beautiful formula.

Proof. Assume that the formula (3.2) is a beautiful formula. Then, we have rSp3qs “ rSp4qs

(mod L), which is a contradiction to Theorem 4.5. □

Remark 4.7. Note that Theorem 4.5 holds for all fields K of characteristic zero such that
there exists a smooth cubic surface S without L-points for every field extension L{K of degree
n prime to 3. In this sense, Corollary 4.6 could be extended. In particular, Corollary 4.6 holds
for any field extension K{Q (or K{Qp) of degree prime to 3.

5. Appendix

5.1. Fano variety of lines.

Definition 5.1 (Fano variety of lines). Let X Ă Pn
K subvariety and let 0 ď m ď n` 1. Define

the Fano functor of planes:
F pX,mq : pSch{Kqo // pSetsq

via

F pX,mqpT q :“ tL Ă T ˆX : L is T -flat and Lt Ă Pn
kptq is a m-dimensional linear subspaceu.

By T -flat we mean that L �
� // T ˆX // T is a flat morphism and the fibres are considered with

respect to this morphism. We would be interested in the case m “ 1, for which we obtain the
Fano functor of lines denoted by F pXq “ F pX, 1q.

Example 5.2. Some familiar cases of Fano functors are the following.
(i) F pP,mq “ Gpm,Pq corresponds to the Grassmann functor. The Grassmann functor is

defined as Gpm,Xq,
(ii) F pX, 0q “ hX “ Homkp´, Xq corresponds to the functor of points.

We want to give a geometric interpretation to this functor via the representation of functors.
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Definition 5.3 (Representable functor). A functor F : Copp // pSetsq is called representable if
there exists an object X P C and an isomorphism η : hX //F . The tuple pη,Xq is uniquely
determined up to unique isomorphism.

Remark 5.4. For our particular case we want to identify the Fano functor of planes with
a variety, which we will call a Fano variety of m-planes. The idea behind this is to use the
representability of the Grassmannian functor, which comes from the Plücker embedding, and
the fact that F pX,mq Ă Gpm,Pq is a closed subfunctor, [Huy23].

Lemma 5.5 (Proposition 2.1.19, [Huy23]). The Fano variety of lines F pXq of a smooth cubic
hypersurface X Ď Pn`1

K , where n ě 2, is a smooth projective variety of dimension 2n´ 4.

5.2. Grothendieck ring of Chow motives. This subsection is mostly based on [Sch94] and
[MNP13]. Let X P SmProj be a smooth projective variety. Define the cycle group, ZdpXq,
to be the free abelian group generated by irreducible subvarieties of X of codimension d ě 0.
We will now consider adequate relations on this group, see [MNP13] for a formal definition of
adequate relations.

Let W Ă X ˆ P1 be a closed irreducible subvariety of dimension d ` 1 and let a, b be dis-
tinct points of P1 such that Xˆa,Xˆb and W intersect properly, namely dimpW XXˆaq ď d

and dimpW X X ˆ bq ď d. The fibre Wa of the morphism W //P1 is the scheme theoretic
intersection W X X ˆ a. Identify X ˆ a as X, then we can think of the fibre Wa as a cycle of
X of dimension ď d. Based on this discussion, we can define the rational equivalence relation:
Two cycles Z1, Z2 Ă X are said to be rational equivalent if there exists a cycle W Ă XˆP1 and
a, b P P1 as described above such that Wa “ Z1 and Wb “ Z2. Extend this equivalence relation
in the natural way over the cycle group.

The intuition behind being rationally equivalent is that one can go from one cycle to the
other one through a rational family of cycles, i.e. a family of cycles parameterised by P1. This
definition can be weakened by allowing families of cycles parameterised by smooth projective
connected curves. This description gives rise to the so called algebraic equivalence. Two cycles
Z1, Z2 Ă X are said to be algebraically equivalent if there exists a connected curve C P SmProj

and a cycle W Ă X ˆ C with Wa “ Z1 and Wb “ Z2 for two points a, b P C. It follows from
the definition that two cycles being rationally equivalent are algebraically equivalent.

Consider the rational equivalence relation „ and define the codimension d Chow group as
CHdpXq :“ ZdpXq b Q{ „. Given two smooth projective varieties X,Y P SmProj such
that X is of pure dimension d we define the group of correspondences of degree r to be
CorrrpX,Y q :“ CHd`rpX ˆ Y q. More generally, for X “

Ů

iXi with Xi connected compo-
nents of X, we define CorrrpX,Y q :“ ‘iCorr

rpXi ˆ Y q.
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We want to relate the cycle groups of two different varietiesX,Y P SmProj related by a proper
morphism f : X // Y with the objective of defining the composition of correspondences. Firstly,
we define the pullback and pushforward of algebraic cycles. Given an irreducible subvariety
W Ă X we define the pushforward by extending linearly following definition:

f˚pW q “

$

&

%

rKpW q : KpfpW qqsfpW q , if dimpfpW qq “ dimpW q

0 , else
.

In order to define the pullback, we need the notion of intersection of two smooth subvarieties
V,W Ă X of codimension n and m, which intersect in a union of subvarieties of codimension
ď n ` m. If all the intersections have codimension n ` m, we say that they intersect properly.
If V,W intersect properly, we define the intersection product, [Har77]:

V ¨W :“
ÿ

Z

ipV ¨W ;ZqZ,

where Z runs over the irreducible components of V X W and ipV ¨ W ;Zq is the intersection
number defined using the Serre’s Tor formula as:

ipV ¨W ;Zq :“
ÿ

r

p´1qrlATor
A
r pA{IpV q, A{IpW qq,

for A “ OX,Z and IpV q the ideal of V in A.

We define the pullback of a subvariety T Ă Y such that Γf intersects properly X ˆ T as:

f˚pT q :“ pprXq˚pΓf ¨ pX ˆ T qq.

The correspondences are a generalisations of morphisms of varieties in the following sense:
Given a morphism of varieties f : X // Y , the Graph Γf P CorrpX,Y q :“ ‘r Corr

rpX,Y q. In
consequence, we should have an analogous to composition of morphisms. Let X,Y, Z P SmProj,
define

CorrrpX,Y q b CorrspY,Zq // Corrr`spX,Zq

by
f b g � // g ˝ f :“ pXZ˚pp˚

XY f ¨ p˚
Y Zgq,

where pXY , pXZ , pY Z are the projections from X ˆ Y ˆ Z to X ˆ Y , X ˆ Z and Y ˆ Z,
respectively.

Definition 5.6 (Category of Chow motives). The category of Chow motives, ChowQ, is de-
fined as follows: The objects are triples pX, p, nq, where X P SmProj is a variety, p “ p2 P

Corr0pX,Xq is an idempotent and n is an integer. If pX, p, nq, pY, q,mq are Chow motives, then

HomChowQppX, p, nq, pY, q,mqq :“ qCorrm´npX,Y qp,

where composition is defined as described above. We call p and q projectors.

Definition 5.7 (Category of Artin motives). Let ChowArt
Q be the pseudo-abelian subcategory

of ChowQ generated by the motives hpXq “ pX, id, 0q associated to zero dimensional smooth
projective varieties X P V.
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Definition 5.8 (Tensor product of motives). We define the tensor product of motives via:

pX, p, nq b pY, q,mq :“ pX ˆ Y, pˆ q, n`mq.

Definition 5.9 (Direct sum of motives). The category ChowQ is an additive category. If
pX, p, nq, pY, q,mq are Chow motives with n “ m the direct sum is defined as

pX, p, nq ‘ pY, q,mq :“ pX \ Y, p\ q, nq.

Example 5.10. LetX P SmProj of dimension d and e P XpKq aK-point. The cycles p0 “ eˆX

and p2d “ X ˆ e define orthogonal projectors, i.e. p0 ˝ p2d “ 0 and p2d ˝ p0 “ 0. This implies
hpXq “ h0pXq ‘ h`pXq ‘ h2dpXq, where h˚pXq “ pX, p˚, 0q with p` “ id ´ p0 ´ p2d. It can be
shown that h0pXq “ pSpecpKq, id, 0q, [MNP13].

Example 5.11. We denote 1 “ hpSpecpKqq “ pSpecpKq, id, 0q, cf. Definition 2.25. By com-
putation of the diagonal ∆P1 can be shown p`pP1q “ 0, which implies hpP1q “ 1 ‘ L, where
L :“ h2pP1q “ pP1,P1 ˆe, 0q is called the Lefschetz motive, [MNP13]. It can also be proved that
L “ pSpecpKq, id,´1q.

Definition 5.12 (Grothendieck ring of Chow motives). Let A be a a Q-linear tensor category.
Denote by K0pAq the free abelian group of isomorphism classes rXs of objects of A modulo the
relations rX ‘ Y s “ rXs ` rY s. The tensor product of A induces a commutative ring structure
on K0pAq. The Grothendieck ring associated to the category of Chow motives ChowQ is called
the Grothendieck ring of Chow motives and is denoted by K0pChowQq.

5.3. Tools from birational geometry. Let X be a surface, P P XpKq be a K-point and
π : X̃ :“ BlP pXq //X be the blow up of X at the point P .

Lemma 5.13. The canonical divisor of X̃ is given by KX̃ “ π˚KX ` E.

Definition 5.14 (Intersection). Let Z Ă X be a proper over K closed subscheme of dimension
d ď n. The intersection of L1, . . . ,Ln P PicpXq with Z is defined as

pL1 . . .L2.Zq “
ÿ

i1,...,imĂt1,...,nu

p´1qmχpZ,L˚
i1 b . . .b L˚

im |Zq.

If Z “ X we write pL1 . . .Lnq.

Definition 5.15 (Intersection form). Let X be a smooth projective surface, then for two curves
C,D Ă X we define the intersection form as

C.D :“ pOXpCq.OXpDqq “ χpOXq ´ χpOXp´Cqq ´ χpOXp´Dqq ` χpOXp´C ´Dqq.

Note that this makes sense since Weil divisors are effective Cartier by smoothness.

Lemma 5.16. Let X be a smooth projective surface. Then the map Z // PicpX̃q defined by
1 � //OXpEq, where E is the exceptional divisor of the blow up π : X̃ //X, and the natural map
π˚ : PicpXq // PicpX̃q determine an isomorphism PicpX̃q » PicpXq ‘ Z. The intersection
form on BlP pXq is determined by:

(i) If C,D P PicpXq, then π˚C.π˚D “ C.D.
(ii) If C P PicpXq, then π˚C.E “ 0, where E is the exceptional line.
(iii) E.E “ ´1 in PicpX̃q.



27

Theorem 5.17 (Castelnuovo’s contraction theorem, [Har77]). Let X be a smooth surface,
C Ă X a curve with C » P1 and C2 “ ´1. Then there exists a smooth surface Y , a point y P Y

and an isomorphism X » BlypY q identifying C with the exceptional divisor.

Corollary 5.18. Let X be a smooth surface. Then X is minimal if and only if X contains no
p´1q-curves. □

Theorem 5.19 (Classification of minimal smooth surfaces, [Har77]). Let X be a minimal
smooth surface. Then X satisfies exactly one of the following conditions.

(i) X has Kodaira dimension κpXq “ ´8. Hence X » P2 or X is a P1-bundle over a curve.
(ii) X has Kodaira dimension κpXq “ 0. Hence X is an Abelian, K3, Enriques or a

(quasi)bielliptic surface.
(iii) X has Kodaira dimension κpXq “ 1. Hence X admits a fibration over a curve f : X //C

such that all the fibres are smooth elliptic curves.
(iv) X has Kodaira dimension κpXq “ 2. Hence X is of general type.

Theorem 5.20 (Weak factorisation theorem, [Abr+00]). Let ϕ : X1 99K X2 be a birational
map between complete smooth connected varieties, let U Ă X1 be an open set where ϕ is an
isomorphism. Then ϕ can be factored into a sequence of blow-ups and blow-downs with smooth
centres disjoint from U . There exists a sequence of birational maps

X1 “ V0
ϕ1
99K V1

ϕ2
99K . . .

ϕi
99K Vi

ϕi`1
99K Vi`1

ϕi`2
99K . . .

ϕl´1
99K Vl´1

ϕl
99K Vl “ X2,

where ϕ “ ϕl ˝ ϕl´1 ˝ ¨ ¨ ¨ϕ2 ˝ ϕ1, such that each factor ϕi is an isomorphism over U , and
ϕi : Vi 99K Vi`1 or ϕ´1

i : Vi`1 99K Vi is a morphism obtained by blowing up a smooth centre
disjoint from U .

5.4. Resolutions of rational double point singularities. The following study of rational
double point singularities in surfaces is mostly based on [Dol12]. Throughout this section let X
be a normal projective surface and π : X̃ //X be a minimal resolution of singularities.

Definition 5.21 (Resolution of singularity). A resolution of X is a birational, proper and
surjective morphism π : X̃ //X, where X̃ is a non-singular projective variety. A resolution is
called minimal if it does not factor non-trivially through another resolution of singularities.

Remark 5.22. It was proved in [Hir64] that resolutions always exist for varieties over fields of
characteristic zero.

Lemma 5.23. For any resolution π : X̃ //X we have π˚OX̃ “ OX .

Proof. Without loss of generality we restrict to the affine case X “ SpecpAq. Since π is proper,
π˚OX̃ is coherent. Hence B “ Γpπ˚OX̃ , Xq is a finitely generated A-module. By birationallity
of π, A and B have the same quotient field. Additionally, X is normal, hence A is integrally
closed, which implies B “ A. □

Definition 5.24 (Rational singularity). A singularity of X is rational, if for the resolution
π : X̃ //X we have R1π˚OX̃ “ 0.
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Remark 5.25. The definition of a rational singularity is independent of the chosen resolution.
To prove this consider the functor π˚ : ShpX̃q // ShpXq, which sends injective objects to Γ-
acyclic objects. Hence there exists a spectral sequence

Ep,q
2 “ pRpΓRqπ˚qpF q “ HppX,Rqπ˚pF qq ñ Rp`qpΓ ˝ π˚qpF q “ Hp`qpX̃, F q,

which is natural in F . It can be verified that this sequence stabilises on the third page, hence

H2pX̃,OX̃q “ E2,0
8 “ E2,0

3 “ E2,0
2 {E0,1

2 “ H2pX,OXq{H0pX,R1π˚OX̃q.

This implies papXq´papX̃q “ h0pX,R1π˚OXq and the arithmetic genus is a birational invariant
for varieties over fields of characteristic zero, [Har77].

Lemma 5.26 ([Dol12]). The following statements are equivalent:
(i) x is a rational singularity,
(ii) for every curve C supported in π´1pxq, one has H1pC,OCq “ 0,
(iii) for every curve C supported in π´1pxq we have papCq “ 1 ` 1

2C.pC `KY q ď 0.

For x P X, the exceptional curve E “ π´1pxq is compact and one dimensional, since X is
proper and the resolution is a birational morphism. Additionally, it is connected by Zariski’s
connectedness theorem. Hence, E is the union of finitely many irreducible curves, say tEiuiďn.
Let Zx “

ř

i niEi be a positive cycle minimal (in terms of order on the set of effective divisors)
with the property Z.Ei ď 0 for all Ei supported in π´1pxq, we call such a cycle a fundamental
cycle.

Lemma 5.27. The components Ei of the exceptional curve are isomorphic to P1 and are roots
in the lattice associated to X̃, i.e. Ei.KX̃ “ 0 and E2

i “ ´2.

Proof. From Lemma 5.26 we conclude papEiq “ 0 for all i, hence Ei » P1. From corollary
5.18 we have E2

i ď ´2 because the resolution is minimal. By the adjunction formula, E2
i `

Ei.KX̃ “ ´2 implies Ei.KX̃ ě 0. Let Z be a fundamental cycle, then Lemma 5.26 implies
0 “ 2 ` Z2 ď ´Z.KX̃ “ ´

ř

i niEi.KX̃ . This implies Ei.KX̃ “ 0 for every Ei, hence the
adjunction formula yields E2

i “ ´2. □

5.5. Symmetric product. This section is based on [Mus11]. Let X be a scheme of finite type
over K, and let G be a finite group acting from the right on X by automorphism over K. We
denote by σg the automorphism corresponding to g P G.

Definition 5.28 (Geometric quotient). A geometric quotient of X by G is a pair pX{G, πq

consisting of a K-scheme X{G and a morphism of K-schemes π with the following properties:
(i) The morphism π is G-invariant, i.e. π ˝ σg “ π for all g P G,
(ii) The morphism π is surjective and the fibres of q over closed points of X{G are exactly

the orbits of the closed points of X,
(iii) The scheme X{G carries the quotient topology induced by π,
(iv) The structure sheaf OX{G “ π˚pOG

Xq Ă π˚OX consists of G-invariant sections.
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In the affine case X “ SpecpAq, it can verified that π : SpecpAq // SpecpAGq induced by
the inclusion AG Ă A is a geometric quotient, where AG denote the G-invariant elements in
A, see [Mus11]. In the case of X not being affine, we construct the geometric quotient locally.
In order to do it, we require the existence of an affine open cover tUiuiPI of X such that Ui is
G-invariant for every i P I. The existence of such cover can be verified in the case of X being
quasi-projective. For a detailed construction see [Núñ21].

Theorem 5.29 ([Mus11]). Let X be a quasi-projective scheme and G a finite group acting on
X. Then the geometric quotient X //X{G exists.

Lemma 5.30 ([Núñ21]). Under the conditions of Theorem 5.29, we have that X{G is separated
and of finite type. Moreover, the properties "reduced" and "projective" descend through the
morphism π. In particular, if X is a projective variety, so is X{G.

Given a smooth surface S, we define the n-fold symmetric power of S to be the geometric
quotient Spnq :“ Sn{Sn, where Sn is the n-th symmetric group. Additionally, we define the
Hilbert scheme of n points of S to be Srns :“ HnpSq, see Definition 2.32. Note that a closed
subscheme Z Ă S having constant Hilbert polynomial n is zero dimensional and supported at
finitely many closed points. Even more, dimK H0pZ,OZq “ n “

ř

i dimKpOZ,ziq, where zi runs
over the points where Z is supported and we call dimK H0pZ,OZq the length of Z.

Corollary 5.31. The symmetric product of a smooth cubic surface S is a variety. □

Theorem 5.32 ([Fog68]). Let S be a smooth projective surface. Then the Hilbert scheme Srns

is an irreducible smooth variety of dimension 2n and there is a K-scheme morphism

π : Srns //Spnq

rZs
� //

ÿ

xPS

dimKpOZ,xqrxs,

called the Hilbert–Chow morphism. Moreover, the Hilbert–Chow morphism is a resolution of
singularities.
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Table 1. Character table for the Weyl group of type E6

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Order 1 2 2 2 2 3 3 3 4 4 4 4 5 6 6 6 6 6 6 6 8 9 10 12 12

p “ 2 1 1 1 1 1 6 7 8 3 4 4 4 13 6 7 7 8 8 7 8 9 22 13 19 14

p “ 3 1 2 3 4 5 1 1 1 9 10 11 12 13 3 3 2 3 2 4 5 21 6 23 10 9

p “ 5 1 2 3 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 25

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 1

χ3 6 4 -2 2 0 -3 3 0 2 -2 2 0 1 1 1 1 -2 -2 -1 0 0 0 -1 1 -1

χ4 6 -4 -2 2 0 -3 3 0 2 2 -2 0 1 1 1 -1 -2 2 -1 0 0 0 1 -1 -1

χ5 10 0 -6 2 0 1 -2 4 2 0 0 -2 0 -3 0 0 0 0 2 0 0 1 0 0 -1

χ6 15 -5 7 3 -1 -3 0 3 -1 -3 1 1 0 1 -2 -2 1 1 0 -1 1 0 0 0 -1

χ7 15 -5 -1 -1 3 6 3 0 3 -1 -1 -1 0 2 -1 1 2 -2 -1 0 1 0 0 -1 0

χ8 15 5 7 3 1 -3 0 3 -1 3 -1 1 0 1 -2 2 1 -1 0 1 -1 0 0 0 -1

χ9 15 5 -1 -1 -3 6 3 0 3 1 1 -1 0 2 -1 -1 2 2 -1 0 -1 0 0 1 0

χ10 20 10 4 4 2 2 5 -1 0 2 2 0 0 -2 1 1 1 1 1 -1 0 -1 0 -1 0

χ11 20 -10 4 4 -2 2 5 -1 0 -2 -2 0 0 -2 1 -1 1 -1 1 1 0 -1 0 1 0

χ12 20 0 4 -4 0 -7 2 2 4 0 0 0 0 1 -2 0 -2 0 2 0 0 -1 0 0 1

χ13 24 4 8 0 4 6 0 3 0 0 0 0 -1 2 2 -2 -1 1 0 1 0 0 -1 0 0

χ14 24 -4 8 0 -4 6 0 3 0 0 0 0 -1 2 2 2 -1 -1 0 -1 0 0 1 0 0

χ15 30 -10 -10 2 2 3 3 3 -2 4 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 1

χ16 30 10 -10 2 -2 3 3 3 -2 -4 0 0 0 -1 -1 1 -1 1 -1 1 0 0 0 -1 1

χ17 60 10 -4 4 2 6 -3 -3 0 -2 -2 0 0 2 -1 1 -1 1 1 -1 0 0 0 1 0

χ18 60 -10 -4 4 -2 6 -3 -3 0 2 2 0 0 2 -1 -1 -1 -1 1 1 0 0 0 -1 0

χ19 60 0 12 4 0 -3 -6 0 4 0 0 0 0 -3 0 0 0 0 -2 0 0 0 0 0 1

χ20 64 16 0 0 0 -8 4 -2 0 0 0 0 -1 0 0 -2 0 -2 0 0 0 1 1 0 0

χ21 64 -16 0 0 0 -8 4 -2 0 0 0 0 -1 0 0 2 0 2 0 0 0 1 -1 0 0

χ22 80 0 -16 0 0 -10 -4 2 0 0 0 0 0 2 2 0 2 0 0 0 0 -1 0 0 0

χ23 81 9 9 -3 -3 0 0 0 -3 3 -1 -1 1 0 0 0 0 0 0 0 1 0 -1 0 0

χ24 81 -9 9 -3 3 0 0 0 -3 -3 1 -1 1 0 0 0 0 0 0 0 -1 0 1 0 0

χ25 90 0 -6 -6 0 9 0 0 2 0 0 2 0 -3 0 0 0 0 0 0 0 0 0 0 -1
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