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BEAUTIFUL FORMULAE FOR SMOOTH CUBIC SURFACES:
QUADRUPLES OF POINTS AND TWISTED CUBICS

A. OVALLE

ZUSAMMENFASSUNG. Motiviert durch die in [GS14] bewiesene X-F(X) Formel, untersuchen
wir die Existenz und mogliche Form von Formeln bis zum Grad vier im Grothendieck-Ring
der Varietéten fiir Kérper der Charakteristik 0, die glatte kubische Fldchen mit ihrem Hilbert-
Schemata verallgemeinerter getwisteter Kubiken in Beziehung setzt. Dafiir wenden wir die
stabil-birationale Realisation und die motivische Realisation nach Gillet—Soulé. Insbesondere
beweisen wir in Anlehnung an [Popl8]|, dass es keine ,beautiful" Formel fiir glatte kubische
Flachen mit dem zugehorigen Hilbert-Schemata verallgemeinerter getwisteter Kubiken gibt
und dass die X-F(X) Formel die einzige ,beautiful" Formel vom Grad zwei fiir glatte kubische
Flachen mit ihrer Fano Varietidt von Geraden ist.
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2 A. OVALLE

1. INTRODUCTION

The aim of this thesis is to study the "beautiful" formulae in the Grothendieck ring of vari-
eties relating the classes of symmetric powers of smooth cubic surfaces S, their Fano variety
of lines F'(S), and their associated LLSvS varieties Z(.5), which parameterises the generalised
twisted cubic curves in the cubic surface S, [Leh+17]. We study the existence and the possible
form of such formulae up to degree 4 and for fields of characteristic 0, following [Pop18].

The Grothendieck ring of K-varieties is the free abelian group generated by isomorphism classes
of varieties modulo the scissor relation [X| = [W]+ [X — W], for W < X a closed subscheme,
with the ring structure induced by [X]-[Y] = [X x Y]. We can consider formulae in this ring,
for instance the so called X-F(X) relation [ X+ [P4][X] 4 L*[F(X)] proved in [GS14], where
X < P is a cubic hypersurface and F(X) its associated Fano variety of lines. This formula
is not only beautiful in the sense that it allows us to relate the geometry of a cubic hypersurface
and the geometry of its Fano variety of lines, for example by relating the Hodge numbers of
F(X) and X [Huy23| or permitting us to calculate the zeta functions of F'(X) for smooth cubic
threefolds and fourfolds [DLR17], but it is also beautiful in a more precise sense introduced by
Galkin in [Gall7], see Definition 2.15.

There are different geometric objects that can be considered in a cubic surface to shed light on
its geometry. In this thesis we will be interested mainly in configurations of points and twisted
cubics. Since the Hilbert scheme of points parameterises configurations of points and the LLSvS
variety parameterises generalised twisted cubics in the cubic surface [Leh+17], our main goal
is to address the following question: What types of formulae exist in the Grothendieck ring of
varieties for smooth cubic surfaces S with its LLSvS variety and symmetric powers of S? In or-
der to deal with this question, we will employ realisations of the Grothendieck ring of varieties,
more specifically the stable birational realisation [LLO1] and the Gillet-Soulé motivic realisa-
tion [GS96]. This will allow us to apply results from birational geometry and representation

theory to find obstructions to the possible formulae holding in the Grothendieck ring of varieties.

The first chapter briefly introduces the notion of the Grothendieck ring of varieties and ex-
plores basic results about this ring. In this chapter will be presented a proof of the X-F(X)
relation, which is an example of a beautiful formula of degree 2 in the Grothendieck ring of
varieties. Additionally, we will study two realisations of this ring, namely the stable birational
realisation and the Gillet—Soulé motivic realisation, which will be our main tools to study the
Grothendieck ring of varieties and beautiful formulae.

In the second chapter we will explore obstructions to the possible form of beautiful formulae
coming from the Gillet—Soulé motivic realisation and representation theory. In particular, we
will prove, following [Pop18|, that the only possible form of a beautiful formula of degree 4 for



smooth cubic surfaces S, with their LLSvS variety Z(S5), is
LY[Z(S)] = [SW] = (1 = L+ L?)[S®] - L[S][S®] + (L + L* + L?)[$?] — 2L2[S®]

1) — (L—L2+L3—L*+L%[S] + (L2 + L* + L)

and the only possible form of a beautiful formula of degree 2 for S and its Fano variety of lines,
F(S), is given by the X-F(X) relation.

Finally, the third chapter will be dedicated to obstructions to the form of beautiful formulae
coming from the stable birational realisation. In particular, we will prove, following [Pop1§|,
that the formula (1.1) is not a beautiful formula and, in consequence, there is no formula of

degree 4 relating smooth cubic surfaces and their associated LLSvS variety.

Acknowledgements: I wish to thank my supervisor Prof. Dr. Daniel Huybrechts for guiding
me through the process of writing this thesis, his willingness to answer my questions and
his recommendations, and Dr. Gebhard Martin for introducing me to this exciting area of
mathematics. During my Bachelor at the University of Bonn I was supported by a scholarship
from the Friedrich Ebert Stiftung.

2. PRELIMINARIES

2.1. Grothendieck ring of varieties. This subsection is based on [CNS18].

Definition 2.1 (Category V). A K-variety is for us a reduced and separated K-scheme of finite

type. The K-varieties form the category V with morphisms of K-schemes as morphisms.!

Convention: In this thesis we let K be a field of characteristic zero, unless otherwise
indicated, and we will refer to the K-varieties as varieties.

Definition 2.2 (The Grothendieck ring of varieties). The free abelian group of isomorphism
classes of ¥V modulo the subgroup generated by ([X] — [W] — [X — W]), for W < X a closed
subscheme with the reduced induced subscheme structure, carries a unique ring structure via
[X]-[Y]:=[X x Y] with neutral element [Spec(K)]. This ring is called the Grothendieck ring
of varieties Ko(V).

Example 2.3. The class of the affine line and of the projective space will play a crucial role.
(1) Define L := [A!]. Since A" ~ (A1)", we obtain [A"] = L".
(2) Consider Dy (zo) = P". Since D,(wg) ~ A" and P" — Dy (z9) ~ P" 1, we have
[P"]=14+L+---+1L"

Definition 2.4 (Pointwise trivial fibration). Let X, Y, F' be varieties. A morphism f: X —Y
is a piecewise trivial fibration with fibre F' if there exists a finite partition (Y;);er of Y into
locally closed subsets such that X xy Y; ~ F x Y; are isomorphic as Y; schemes for every i € I,

where Y; are endowed with the reduced induced subscheme structure.

Example 2.5. Any geometric vector bundle is a pointwise trivial fibration by definition.

IHere we are using the convention used in [Bit04], since Bittner’s presentation of the Grothendieck ring of

varieties plays an important role in this thesis.
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Definition 2.6 (Piecewise isomorphism). Let X,Y be varieties. They are said to be piecewise
isomorphic if there exists an integer n and finite partitions (X1, ..., X,), (Y1,...,Y},) into locally
closed subsets of X and Y respectively endowed with the reduced induced subscheme structure,
such that for every i holds X; ~ Y, as varieties.

Lemma 2.7. Let X be a variety with finite partition (X1,...,Xy) of locally closed subsets
endowed with the reduced induced subscheme structure. Then

[X] =) [Xi]-
i>1
Proof. Since X is a locally closed subset, there exist closed subsets X| < X7 with X; =
X! —X{. Let U = X — X{, then [X] = [X]] + [U]. Additionally, by X; = X7 — X, we get
[XT] = [X1] + [X4], hence [X] = [X7] + [X3] + [U].
Now, for i € 2,...,n we have X| n X; € X, is a closed subset and U n X, is its complement,
therefore [X;] = [X] n X;] + [U n X;]. Additionally, {X{ n X;}i>2 and {U n X;}i>2 form
a partition of X; and U respectively, which implies by induction [X{] = >,_,[X] n X;] and
[U] = >i=2[UnX;]. Thus, we have [X] = >, o [X]n Xi]+[X1]4+2 2, [UnX;] = 2o, [Xe]. O

Corollary 2.8. Let X, Y be piecewise isomorphic varieties. Then [X] = [Y]. O

Lemma 2.9. Let X, Y, F be varieties and let f: X —Y be a piecewise trivial fibration with
fibre F'. Then X and F XY are piecewise isomorphic and

Proof. Since f is a piecewise trivial fibration, there exists a finite partition into locally closed
subsets of Y, let (Y;); be such partition. Then (X xy Y;); is a partition of X and F x Y has
partition (F' x Y;);. By definition of pointwise trivial fibration we know [X xy Y;] = [F x Yj],
hence [X]| = [F x Y] = [F][Y] by Corollary 2.8. O

Corollary 2.10. Let X be a smooth variety and W < X a smooth closed subvariety of codi-
menston n. Then

[Blw (X)] = [P"~1][W] = [X] - [W].

Proof. By the construction of blow-ups we have the relation [Bly (X)]—[P(Nw,/x)] = [X]—-[W].
For W < X smooth closed subvariety of codimension n, P(Ny, / x)—> W is a projective bundle
of dimension n — 1, which means that it is a Zariski locally trivial fibration with fibre P*~! and
therefore the result follows from Lemma 2.9. g

Definition 2.11 (pre-A-structure). Let R be a commutative ring with 1. A pre-A-structure on
R is an operation A: R x N— R such that for all x,y € R hold:

(i) \(2) =1,

(i) A (2) = =,

(i) A"(z + 1) = X5 X (@)N ().
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Remark 2.12. For z € R let A(z,t) == >, A\"(z)t". Note that the three conditions of a
pre-A-structure are equivalent to the following two conditions:

(1) A(z,t) = 1+ at+ X7, \"(z)t",

(ii)) A(z +y,t) = Az, t)A(y, t).

Lemma 2.13. The symmetric product X" = Sym"™(X) defines a pre-A-structure on Ko(V)
with the property that [Sym™(A™ x X)] = L™ [Sym"(X)].

Proof. The first two conditions of Definition 2.11 are clear. By the last remark, the third con-
dition is equivalent to the fact that the Kapranov’s Zeta function Zxap([X],t) = 372 [X ™))"
is multiplicative, which was proved by Totaro [G6t00]. The property [Sym"(A™ x X)] =
L™ [Sym"(X)] was proved in [G6t00]. O

2.2. Beautiful Formulae in the Grothendieck ring of varieties. We have enough infor-
mation to make precise what we mean by a formula relating the geometry of two varieties. For
instance, we could ask if it is possible to find a formula in the Grothendieck ring of varieties
encoding the geometric relations between smooth cubic hypersurfaces and their associated Fano
variety of lines. The following discussion is based on [Huy23| and |[GS14].

Let V be a K vector space of dimension n+ 2. Consider the Grassmannian of m+ 1 planes in V/,
denoted by G(m + 1,V), or equivalently G := G(m,P"*!), where P"*! is the projectivisation
of V. Let £ be the universal bundle of the Grassmannian G, which fits in the following short
exact sequence:

00— —VR®0g —9——0.

The universal bundle £ can be thought of as {(I',v) : T' € G,v € T'}, from which it is clear that
it is of rank m + 1. After taking the projectivisation of the universal bundle we obtain, [GW10]:

Lg = P(£) — Proj(Sym(V* ® Og)) = G(m,P"*1) x Pt —~G(m,P"™!) = G,

which is a P™-bundle, since the fibre at I' € G corresponds exactly to elements of the form
(T',v), where v e T

Let X be a smooth cubic hypersurface, consider the case m = 1 and restrict the bundle to
F(X) < G(1,P""1) to obtain the P'-bundle

Consider now
(2.2) Lelx ={(z,L):xe X n L,L < P""! aline} — X,

which is a P"-bundle because the fibre at x € X corresponds to lines in P**! passing through
x.

We still need one ingredient in order to prove the X-F(X) relation, namely the isomorphism

X 2B~ £glx - L,
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where X2 is the Hilbert scheme of subschemes of length 2 of X. A length 2 subscheme 7 of
X is either a pair of K-points, a pair of Galois conjugate points or one K-point and a tangent
direction to it. In any of these cases there is a unique K-rational line [ passing trough 7. Define
X — 2Pl £6]x sending 7 € X2 to (z,1;) € Lg|x, where [, is the unique line containing 7
and zx is the residual intersection of [ and X. Note that [, is not contained in X because we are
restricted to elements in X2 — £21. The inverse of the latter morphism is Lg|x — £— X2
defined by sending (z,1) to the residual intersection of [ and X.

Theorem 2.14 (X-F(X) relation, [GS14]). Let X < P! be a smooth cubic hypersurface.
Then in Ko(V) the following equation holds

[X B = [P*][X] + L2[F (X)),
where L = [Al].

Proof. The P"-bundle Lg|x — X in (2.2) implies by Lemma 2.9 the following formula in the
Grothendieck ring of varieties

[Lelx] = [P"][X].

Similarly, the P!-bundle £— F(X) in (2.1) implies
[£] = [PH[F(X)].

We have furthermore the isomorphism X2 — 22l ~ Lg|x — L constructed above and the
P2-bundle £12 — F(X), yielding

[XPI) = [P + [Le|x] - [£] = [PPI[F(X)] + [P"][X] - [PY][F(X)] = [P"][X] + L*[F(X)],
where L denotes the class of the affine space Al in the Grothendieck ring of varieties. U

The last result is known as the X-F(X) relation and allows us to relate the geometry of X
and the geometry of F(X) via a formula in the Grothendieck ring of varieties, for instance this
relation was used in [GS14] to study the Hodge structure of F'(X). Motivated by this relation
we will define what we mean by a beautiful formula and this will permit us to state the main

objective of this thesis.

Definition 2.15 (Beautiful formulae, [Pop18]). A polynomial expression with formal symbols
[X] = [XW], [X™], [X"], [F(X)], [Z(X)] and L vanishing at any smooth cubic surface
X =S, where F(X) and Z(X) are the Fano variety of lines and the LLSvS variety associated
to X respectively, cf. Theorem 2.39, will be called a beautiful formula for smooth cubic surfaces
with F(X) and/or Z(X). We assign a degree to such a formula by assigning degree n to the
classes [X(™] and [X"] and 0 to the classes [F(X)], [Z(X)] and L. If the formula does not
contain the symbols [F(X)] or [Z(X)], we call the formula homogeneous.



Remark 2.16. If S is a smooth surface, the Gottsche formula, [G6t00]:
0¢] e @] ) )
(S = [ | Zap([S1. L7119,
1

n=0 i=

where Ziap([S],1) = Y2 [S™]t" is the Kapranov’s Zeta function, allows us to express any
beautiful formula for a smooth surface S involving symmetric powers [S™] in terms of their
Hilbert scheme of points [S!"] and vice versa.

Example 2.17. The X-F(X) relation can be written in the following form
[XP] = (1 +L")[X] + L*[F(X)],
which is an example of a beautiful formula of degree 2.

2.3. Realisations of the Grothendieck ring of varieties. The Grothendieck ring of vari-
eties and therefore formulae in this ring are still poorly understood and, in order to understand
it better the so called realisations or motivic measures are useful tools. More specifically, we
will use the stable birational realisation and the Gillet—Soulé motivic realisation to determine

obstructions to the possible form that beautiful formulae can possibly have.

Definition 2.18 (Realisation). A realisation of the Grothendieck ring of varieties with values
in the ring R is a ring homomorphism Ko(V) — R.

We will first consider the stable birational realisation, which will play a crucial role in deter-

mining obstructions to the form of beautiful formulae via stable birational geometry.

Definition 2.19 (Stable birational equivalence). Two varieties X, Y are said to be stably
birationally equivalent if the varieties X x P" and Y x P"™ are birational for n,m € Z~(. Let SB
denote the multiplicative monoid of classes of stable birational equivalence of smooth varieties
with product [X]-[Y]:=[X x Y].

We will proceed to prove an interesting result by Larsen-Lunts [LLO1| that ensures the
existence of a realisation of the Grothendieck ring of varieties onto the monoid ring Z[SB],
which induces an isomorphism Ko(V)/(L) ~ Z[SB]. In order to prove it, we need the so called
Bittner’s description of the Grothendieck ring of varieties [Bit04].

Theorem 2.20 (Bittner’s description of the Grothendieck ring of varieties, |Bit04|). The
Grothendieck ring of varieties has the following alternative presentations:

(sm) Let N be the multiplicative monoid of isomorphism classes of smooth varieties. Then
the Grothendieck ring of varieties is isomorphic to the free abelian group Z[N] subject to the
relations [X] = [X — W]+ [W], where X is smooth and W < X is a smooth closed subvariety.

(bl) Let M be the multiplicative monoid of isomorphism classes of smooth complete varieties.
Then the Grothendieck ring of varieties is isomorphic to the abelian group Z[M] subject to the
relations [F] = 0 and [Bly (X)] = [X] + [E] — [W], where X is smooth and complete, W < X
is a smooth closed subvariety and E is the exceptional divisor of the blow-up Bly (X).
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Remark 2.21 (|Bit04]). We get the same group in Theorem 2.20 if in (sm) we restrict to quasi-
projective smooth varieties and if in (bl) we restrict to smooth projective complete varieties.
We can also restrict to the connected case in both presentations.

Corollary 2.22 (|[LLO1]). Let G be a commutative monoid and Z[G] its monoid ring. Let M
be the multiplicative monoid of isomorphism classes of smooth connected complete varieties, see
Remark 2.21, and let V: M —=G be a homomorphism of monoids such that:

(i) U([X]) = ¥([Y]) if X and Y are birational,

(ii) U([P"]) =1 for allm = 0.

Then there exists a unique ring homomorphism
o: Ko(V)—Z[G],
such that ®([X]) = U([X]) for all [X] e M.

Proof. The morphism ¥ induces a morphism ¥’': Z[M]—Z[G]. Additionally, consider the
canonical projection 7: Z[M]—=Z[M]/ ~, where ~ represents the relation [Bly (X)] — [E] =
[X] — [W] for Blyy(X) the blow-up of X with centre W and exceptional divisor E.

By Theorem 2.20, we have Ko (V) ~ Z[M]/ ~, thus we need the morphism ¥’ to factor through
Z|M]/ ~, which happens if U'([Bly X] — [E]) = V/([X] — [W]). For this we will prove
U(Bly (X)) = ¥(X) and V(E) = ¥(W).

Since the blow-up morphism is a birational map, we have by the first condition ¥ (Bly (X)) =
V(X). Furthermore, we know that U(E) = U(W)P¥(P") holds for some r, since [E] =
[W][P"], then by the second condition we have ¥(E) = ¥(W). Hence, we have a morphism
Ko(V) — Z[G]. O

Corollary 2.23 (Stable birational realisation, [LLO1]). There ezists a realisation
Osp: Ko(V)—Z[SB],
which induces an isomorphism Ko(V)/(L) —Z[SB].

Proof. Two isomorphic smooth complete varieties are stably birationally equivalent, therefore
we have a natural surjection ¥: M — SB satisfying by definition the first condition in Corollary
2.22. The second condition follows from the fact that [P"] = [Spec(K)] in SB. This implies
by Corollary 2.22 the existence of a realisation ®gp: Ko(V) —=Z[SB], which is surjective by
the surjectivity of the morphism ¥: M — SB. We need now to prove that the kernel of the
morphism Pgp is exactly [L].

We have in particular by Corollary 2.22 that ®gg(P") = 1, then ®gg(1 + L) = ®gg(P!) = 1,
therefore (L) = Kern(®gp).

Let [X] € Kern(®gp), then by Theorem 2.20 we can write [X] = Zle ni[X;] — Zé-:l m;[Y;] as
sum of smooth complete varieties. Apply the realisation ®gp to get

k l
> midsp(Xi) = ) n;Psp(Y;)
i j

in Z[SB], which implies by the structure of the monoid ring, after renumbering, that k = I,
m; = n; and X; and Y; are stably birationally equivalent. By this result, it suffices to prove



that X —Y € (L) for X,Y stably birationally equivalent.
Note that in Ko(V) one has

[X x P*] = [X][P*] = [X](1 + L+ --- +1LF),

hence [X x P*] = [X] mod L. Thus, it suffices to prove that for X,Y being birational, we
have X —Y € (L). Let X,Y be birational varieties, then by Theorem 5.20 we can factor the
birational map by a sequence of blow-ups and blow-downs, which implies that we can assume
X to be a blow-up of Y with smooth centre Z and exceptional divisor E. Therefore for some ¢
we have

[(X]-[¥]=1[2] - [E] = [Z] - [P'][Z] = [Z](L + --- + L),

which implies the claimed result. O

Corollary 2.24. Let X,Y1,...,Y, be smooth, complete varieties such that the following equality
holds in the Grothendieck ring of varieties:

[X] =D milYil,
-1

for some n; € Z. Then X is stably birationally equivalent to Y; for some 1 < i < n.

Proof. Tt follows directly after applying the stable birational realisation and considering the
formula in Z[SB]. O

Another realisation that will allow us to determine obstructions to the form of beautiful
formulae is the Gillet—Soulé motivic realisation.

Theorem 2.25 (Gillet—Soulé motivic realisation, [GS96]|). There exists a unique ring homo-

morphism
tmot: Ko(V)— Ko(Chowg).
If [X] is the class of a smooth projective variety, its image is [H(X)], where h(X) = (X,idx,0).

2.4. The 27 lines. The symmetries of the lines lying in a smooth cubic surface S < P3 will
give us restrictions to the possible formulae that we can construct for smooth cubic surfaces
in the Grothendieck ring of varieties. For this reason, we will review in this subsection some
results about them. We will be using mainly results from [Har77] and [Dol12].

Lemma 2.26. For any smooth cubic surface S < P? over an algebraically closed field K holds
wg ~ Og(—1).

Proof. Since S is the zero locus of a cubic polynomial, say f, multiplication by f induces
an isomorphism Zg ~ Opn(—3). Hence, wps ~ Ops(—4) implies via the adjunction formula

wg ~ (w]p3 ®O(S))’s ~ Os(—1>. O
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Lemma 2.27. Let S < P3 be a smooth cubic surface over an algebraically closed field. Then S
contains six pairwise disjoint lines Iy, ..., lg.

Proof. This follows from the following classical facts. One can find at least two skew lines in
S, say Li.Lo, [Shal3]. Given L; < S, it meets exactly ten other lines, which come in pairs of
intersecting lines {l;,’}1<i<s such that l; nl; = l; n l;- = ¢ for i # j, [Shal3]. Since Ly does
not meet Ly, then Ly meets at most one of the lines [;, I} for each 1 < i < 5, otherwise L; and

Lo would be coplanar and therefore not disjoint. Without loss of generality, Ly does not meet
l; for 1 < ¢ < 5, which are by hypothesis disjoint. O

Any line in a smooth cubic surface S is a (—1)-curve, cf. Remark 2.30. Moreover, Table 8.3.
in |[Dol12| shows that there is no set of 7 disjoint (—1)-curves in a smooth cubic surface. This
result can also be proved by showing that Pic(S) ~ Z7 as in [Huy23], however we will deduce
the form of the Picard group as a consequence of the description of a smooth cubic surface as
a blow-up.

Lemma 2.28. Let S be a smooth cubic surface over an algebraically closed field. Then S is
isomorphic to the blow-up of P? in siz distinct points x; € P2 fori=1,...,6.

Proof. Lemma 2.27 allows us to apply successively Castelnuovo’s Theorem 5.17 six times, hence
S is the blow-up of a smooth surface Sy at 6 distinct points. Since S does not have more than 6
skew lines, by Corollary 5.18 we have that Sy is minimal. The classification of minimal smooth
surfaces via the Kodaira dimension in Theorem 5.19 implies that Sy ~ P2, O

The last result provide us with substantial geometric information about smooth cubic surfaces
as we can appreciate from the following lemma. Let S < P be a smooth cubic surface over an
algebraically closed field. As proved in Lemma 2.28, S is isomorphic to the blow-up of P? at
six distinct points Py, ..., Ps. Let m: S—=P? be the composition of the blow-ups, F,..., Es €
Pic(S) the corresponding exceptional curves and let Ey € Pic(S) be the class of 7%l for a line
l() e IPQ.

Lemma 2.29. Let S < P? be a smooth cubic surface. The following statements hold:

(i) NS(S) := Pic(Sg) ~ Z7,

(ii) The canonical divisor is KSK =-3Ey+ E1+ -+ Ejg,

(iii) The intersection form NS(S) x NS(S)—Z is given by Eo.Ey = 1, E;.E; = —;; for
Jj#0.
Proof. Since Sg is a blow-up of 6 points over P2, we can blow-up point by point and apply
Lemma 5.16 successively. Hence, NS(S) = Z7.

The canonical divisor of P? is given by Kp2z = —3Ey. By applying Lemma 5.13, we obtain
KS}.{ =-3Fky+ FE1 + -+ Eg.

Finally, the description of the intersection form follows from Lemma 5.16. U

It can be checked that the intersection form defined above is a bilinear form with signature
(1,6), which allows us to interpret the Néron-Severi group of S, NS(S), as the lattice I; 5. The
orthogonal complement of the canonical divisor K § is a root lattice of type Eg, with group of
isometries O(Eg), [Dol12].



11

Remark 2.30. Consider the set I := {L € NS(S) : L.Kg = —1,L.L = —1}. A curve C has
linear Hilbert polynomial H¢o(d) = ad + b, where po(C) = 1 — b is the arithmetic genus of
C and deg(C) = a is the degree of C'. Additionally, via intersection theory we have p,(C) =
$(C.Kg + C* + 2) and deg(C) = C.(—Kg), [Har77]. This implies that L € NS(S) maps to a
line under the closed immersion Sg C—>IP’§—< if and only if L € I, since the Hilbert polynomial
of a line is 1 + d. In consequence, I consists of the classes of lines in the smooth cubic surface
Si. Then, by Lemma 2.29 we obtain 27 classes of lines in S which are characterised as formal
sums of the exceptional curves Ey, ..., Eg € NS(S) as follows:

(i) Six lines: E; for i # 0,

(ii) Fifteen lines: Ey — E; — Ej for i # j # 0,

(iii) Six lines: 2Eq + E; — Y5_; Ej for i # 0.

Remark 2.31. Consider the set of roots R = {r € NS(S) : nKg = 0,rr = —2}. The
reflections? associated to roots generate a subgroup of the group of isometries of Eg, denoted by
W, which is called Weyl group of type Eg. This group stabilises I and preserves the intersection
form. By Lemma 2.29 we get following description of the vectors in R:

(i) One vector: 2Ey — Z?:l E;,

(i) Twenty vectors: Ey — E; — E; — Ej, for different 4, j, k # 0,

(iii) Thirty vectors: E; — Ej for i # j,

(iv) Twenty vectors: —Ey + E; + E; + Ej, for different 4, j, k +# 0,

(v) One vector: —2Eqy + 30| F;.

2.5. Twisted cubics in cubic surfaces. In analogy to the X-F(X) relation, we could ask
if studying a specific family of curves in a variety gives us useful geometric information of the
original variety. We could for instance consider the geometric relations between smooth cubic
hypersurfaces and a variety parameterising the twisted cubics lying in them. To make this

notion precise we need some definitions and results. This subsection is based on [Leh+17].

Definition 2.32 (Hilbert scheme with Hilbert polynomial P). Let X < P**! be closed sub-
scheme and let P(d) be a polynomial in the variable d. There exists a scheme HP(X) called
the Hilbert scheme of X for the Hilbert polynomial P(d), with a flat family of subschemes of
X
FcHP(X) x X T 1P (X),

having the following properties:

(i) All the fibres of 7 have Hilbert polynomial P(d).

(ii) For any flat family 7/ < B x X ™. B whose fibres have Hilbert polynomial P(d), there
is a unique morphism a: B—=H(X), such that F’ is equal to the pullback of F.

Recall that a twisted cubic is a smooth curve C' < P3, which is projective equivalent to the
image of P! under the Veronese embedding of degree 3, [zo : 1]+ [z3 : 281 : woz? @ 23]
We want to consider a Hilbert scheme as in Definition 2.32 parameterising the twisted cubics,
therefore a natural question is: What is the Hilbert polynomial of a twisted cubic?

2For a € R is defined the reflection associated to a as ro: li6—>I16, via v—>v + (v, @)a, [Dol12]
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Lemma 2.33. A twisted cubic has Hilbert polynomial 3d + 1.

Proof. Let C < P? be a twisted cubic, hence C' is isomorphic to P! via the Veronese embedding
of degree 3, which implies that C' is embedded with degree 3, therefore Oc (1) ~ Opi1(3) and
dimyg H°(C,0¢(d)) = dimg HO(P!, Op1(3d)) = 3d+1. Additionally, we have H'(C, O¢(d)) = 0
for d large enough and ¢ > 1. O

Let S < P3 be a smooth cubic surface and consider the Hilbert schemes H341(P3), H34+1(9)
parameterising curves with Hilbert polynomial 3d+1 in P? and S, respectively. By Lemma 2.33,
the twisted cubics are part of this schemes and it was proved by Piene and Schlessinger [PS85]
that the Hilbert scheme H3?*1(P3) consists of two irreducible components Hy, H; of dimensions
12 and 15 respectively. The irreducible component of dimension 12 contains all the twisted
cubics of P3. From now on we denote H9“(P?) = Hy and we will call any element in H9%(P3)
a generalised twisted cubic. For a smooth cubic surface S, let H9¢(S) be the scheme theoretic
intersection of H3?*1(S) and HI*(P3) in H3?+1(P3), which is the variety parameterising the
generalised twisted cubics contained in S. Finally, following the notation of Popov [Popl8], let
the LLSVS variety Z(S) be H9“(S) modulo linear equivalence.

Question 2.34. Does a beautiful formula of degree 4 for smooth cubic surfaces S with its LLSvS
variety Z(S) exist? If so, what are the possible beautiful formulae of this form?

With the aim of answering this question, it is necessary to understand the structure of the
LLSvS variety Z(S). The following discussion follows closely [Leh+17].

Let S < P? be a normal cubic surface with at most rational double point singularities over
an algebraically closed field K and let o: S—= S be its minimal resolution. In particular, S is
a weak Del Pezzo surface, o is crepant, i.e. it preserves the canonical bundle, and as proved in
Lemma 5.23 we have 0,0 = Og, [Dol12].

Since S € SmProj is a surface, the Picard group of S equipped with the intersecting form, cf.
Definition 5.15, can be treated as a lattice, see [Dol12]|. Analogously to Remark 2.31, we define
the root system R and the Weyl group W associated to such lattice. The irreducible components
E1, ..., Ep, of the exceptional curves 771 (p) over all singularities p € S are isomorphic to P! and

form a basis of a subset of the root system Ry < R, we call them effective roots, see Lemma 5.27.

Let W(Ry) denote the subgroup of the Weyl group W generated by the reflections associated
to the effective roots. The root system R decomposes into finitely many orbits with respect to
the action of W(Ry), [Doll2]. Additionally, in every orbit B < R can be found unique roots
ag, o’y characterised by the property io%.Ei < 0 for all 4, which we will refer to as the mazimal
respectively minimal root of the orbit B, [Doll2]. Given a singularity p € S, let R, < R be the
irreducible subsystem generated by the exceptional curves in the fibre of p. It can be proved
that R, is an orbit under the action of W(Rp) on R, [Doll2].
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Using this information, we will relate the orbits of R under the action of W(Ry) with P2
families of generalised twisted cubics in S. In particular, we will prove, following [Leh+17],
that for smooth cubic surfaces S we have H9(S),.q = R x P2, with R as in Remark 2.31.

Lemma 2.35. Let C S be a generalised twisted cubic, and let C = o='(C) < S denote the
scheme theoretic inverse image. Then C is an effective divisor such that the class of C + Kg s

a root in R. Moreover, 0,0z = O¢.

Proof. Let I < Og and Ic Og be the ideal sheaves of C' and C respectively, so that we have
o*I—>Tand I “>o,] by definition of inverse image. For any singular point p € S, there is an
open neighbourhood U and an epimorphism Of; —=I|y. This induces a surjective morphism
O —=o*I|yy —I|y on a neighbourhood V = ¢~1(U) of the fibre ! (p). Since fibres of o are
at most 1-dimensional, by the theorem on formal functions all second and higher direct images of
coherent sheaves on S vanish, hence pushing down the epimorphism Oy —1T | along o we get
the epimorphism (R'o Og)"u %Rla*ﬂ(]. By definition of rational singularities, Rla*Og =0
and so Rlo,] = 0. In consequence, the rows of the following commutative diagram are exact,
« is injective and g is surjective.

d d
0 1 Os Oc 0.

If C' has no embedded points, 8 is an isomorphism everywhere. If 3 is an isomorphism,
then C cannot have embedded points, otherwise they would show up in 0+Oga. Hence, C is
an effective divisor. Assume now that C has an embedded point p, then C' is a non-Cohen—
Macaulay curve, since being Cohen—Macaulay and having no embedded points are equivalent
for locally Noetherian schemes of dimension < 1. We also have that p is a singular point
of S because C' is non-Cohen—Macaulay |Leh+17|, say with ideal sheaf m, and there exists a
hyperplane section H through p such that I = Og(—H). Let Z, be the fundamental cycle
supported on the exceptional fibre ¢ ~!(p), see Appendix 5.4. By Artin’s Theorem 4 in [Art66],
(0*m)Og = O5(—Zp) and 0,05(—7Z,) = m, so that I= Og(—Z, —0*H) and o+l = I. Then
C' is always an effective divisor and 0.0z = O¢.

Since R’U*(’)~ RJ*I = 0 for ¢ = 1, one gets Ria*(’)~ = 0 for ¢ = 1. We also have

( &) = X(O¢) = 1 because C has arithmetic genus 0 by definition. Furthermore, we have
C.(-Kg) = C.(-Kg) = 3, which implies via the adjunction formula C? = 1. Therefore,
(C+Kj5).Kz=0and (C+ Kg)? = —2, hence C + K is a root by definition. O

Lemma 2.36. Let o be a mazimal root and let C € |a — Kg|. Then C = o(C) c Sisa
subscheme with Hilbert polynomial 3n + 1.

Proof. Take direct images of the short exact sequence 0 —Og(— C’) —05—>0s—0 to get
0—I1—>0g—>0,05—R'0,05(— C)—0, where I is the ideal sheaf of C, and all other
higher direct image sheaves vanish. Since C € |a — Kg| and o is maximal, then E;.(— C) =
E;.(—a+ Kg) = 0. Hence, the restriction of (’)S(—C) to any exceptional curve has non-negative
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degree. For a singularity p € S, let Z, be the fundamental cycle supported on o 1(p), see
Appendix 5.4. Theorem 4 and Lemma 5 in [Art66] yield H'(Z,, O5(—C — mZ,)) = 0 for all
m = 0 and for all singularities p € S. Thus, by applying the theorem on formal functions
and using that non-singular points have finite fibres, we obtain Rla*(Og(—é)) = 0, hence
0+Oz = O¢. This implies

X(Oc(—nKsg)) = x(Oa(—nKg)) = x(Og(—nKg)) — x(Oz(—C — nKg)),

hence by applying the Riemann—Roch formula twice we have

X(Oc(—nKg)) = %(n(n +1)K2 - (—=C —nKg)(—C — (n+ 1)Kg)) = 3n + 1.

Hence, the Hilbert polynomial of C is 3n + 1 as claimed. O

Lemma 2.37 ([Leh+17]). Let o~ be a minimal root. Then the linear system |a~ — Kg| is two
dimensional and base point free, i.e. [a~ — Kg| ~ P2,

Lemma 2.38. Let a € R— Ry and let o™ and o~ denote the mazimal and the minimal root of
its orbit respectively. Then,

(i) The linear system |a — K| is independent of the choice of a in its W(Ry)-orbit.

(ii) The image C = o(C) of a generic curve C € |o — K| is smooth.

(iii) For every curve C' € |a~ — Kg|, we have o(C) is a generalised twisted cubic.
Proof. Assume that o~ # o and let 3 be any root from the orbit of a. Since § is not a
minimal root, there exists an effective root E; with 5.F; < 0. Hence, Ej; is one of the irreducible
components of 5, which leave us only with two possible intersection numbers, either 5.F; = —1
or B.E; = —2. Since $.E; = —2 implies 3 = E;, then we must have 8.E; = —1. Let 8’ = - E;
be the root obtained by reflecting 5 in E;. We have following short exact sequence:

0 — 04(f — Kg) — O3(8 — Kg) — Og(8 — Kg)|g, —= 0.

In Lemma 5.27 we proved E; ~ P!, Since (68— Kg).E; = —1, we have O(8— K3)|g, = Op,(—1),
which has trivial cohomology. This implies h*(O(8' — Kg)) = h*(O(8 — Kg)), hence we have
an isomorphism of linear systems |O(8' — K3)| ~ |O(8 — K3)|. Thus, given C € |O(8 — K3)|,
we have the short exact sequence:

0 ——= 05(~C — E;) — 0g(~C) — Op,(—1) — 0.

In particular, since Op, (—1) has no non-trivial cohomology, 0,05(—C — E;) = 0,.05(-C)
Og define the same image curve o(C' — F;) = o(C). Replacing 8 by ' subtracts a fixed
component from the linear system |Og(3 — Kg)|. Iterations of this step lead in finitely many
steps to the minimal root —a. Hence, all roots in the W(Rp)-orbit of v define isomorphic linear
systems and the same family of subschemes in S. The same procedure works for o~ = a™.

Take o = a~, then a generic curve in C € |a~ — Kg| is smooth by Lemma 2.37. Let pe S
be a singularity and recall that R, ¢ Ry < R is the irreducible subsystem generated by the

exceptional curves in the fibre of p, which is an orbit under the action of W(Ry) on R. The
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preimage o~ 1(p) corresponds to the maximal root a;gp with a‘.a;fzp € {0,1}. Hence, C = o(C)
does not contain p or is smooth at p. Since ¢ is birational outside of the singular locus of S,
the curve C' = o(C) is smooth.

Finally, taking o = o, Lemma 2.36 implies that for any C € |a~ — Kg| we have o(C) c S is

a generalised twisted cubic. O

Theorem 2.39. Let S be a normal cubic surface with at most rational double point singularities
over an algebraically closed field K. Then, we have

HI®(S) eq ~ |_| |05(ap — K3)| ~ (R/W(Rp)) x P2.
BeR/W(Ro)

In particular, if S is a smooth cubic surface over a field of characteristic zero, the geometric
points of Z(S) correspond to the roots R < NS(S) as in Remark 2.51. O

3. OBSTRUCTIONS FROM REPRESENTATION THEORY VIA THE GILLET—SOULE MOTIVIC
REALISATION

We are interested in finding conditions for the possible beautiful formulae for smooth cubic
surfaces S < P3. In order to achieve this, we will consider the image of its symmetric prod-
ucts [S(™)], its associated Fano variety of lines F(S) and its associated LLSvS variety Z(S)
under the Gillet—Soulé motivic realisation and find the possible formulae relating this classes in
Ko(Chowg). We require some technical results, namely Theorems 3.3 and 3.7, that allow us to
compare beautiful formulae and formulae in the Grothendieck ring of Chow motives Ko(Chowg)
via Corollary 3.8. This section is mainly based on [Popl8] and [SP11].

One of the main tools that we will be using to restrict the form of beautiful formulae comes from
the theory of Galois representations. By a Galois representation of the Galois extension L/K we
mean a discrete, finite dimensional representation of the Galois group Gal(L/K) over Q, where
a discrete representation is a group homomorphism Gal(L/K)— GL(V') being continuous for
GL(V') equipped with the discrete topology and Gal(L/K) with the profinite topology. We
denote the category of Galois representations of L/K by Rep(Gal(L/K)). Morphisms are given
by morphisms of representations, namely morphisms commuting with the action of the Galois
group. We fix the notation Galgx = Gal(K/K) for the absolute Galois group.

Denote by Chow(% < Chowg the subcategory of zero dimensional Chow motives with objects
M ®L", where M € Chovvart is an Artin motive and n € Z, see Appendix 5.2. Observe
that for any Chow motive (X,id,n) e Chow%, the geometric points X (K) come with a Galk-
action. Thus, by assigning a basis vector b, € QX(R) to € X(K), we obtain a represen-
tation Galg —= GL(QX)). Denote this representation by Rep(X) = Rep(h(X)). More-
over, Rep: Chow(% — Rep(Galg) defines a functor: Let X,Y € SmProj be zero dimensional
varieties and let f € Cort®(X,Y) be a correspondence. By base changing we get a cycle
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fre € Cort®(Xf, Y). Hence, we can write uniquely

fr = Z agylz X y],
zeX (K),yeY (K)
for oz, € Q. Additionally, we have Homcpowg (h(X), H(Y)) = Corr®(X,Y), hence for any mor-
phism ¢: h(X)—h(Y) we define Rep(¢) : Rep(X) — Rep(Y') to be given by by +— >}, v yby.
This morphism commutes with the action of Galg because fz comes from f € Corr’(X,Y)
and Galg leaves K-points invariant, therefore it leaves f invariant and so does with fz be-
cause Corr?(X,Y) — Corr’(X ¢, Yi) is injective. It can be verified that this definition satisfies

Rep(¢ o 9) = Rep(¢) o Rep(¥)).

Lemma 3.1. Let p: Gal(L/K)— GL(V) be a Galois representation of an infinite Galois
extension L/K. Then there exists a finite Galois subextension K'/K such that the action of
Gal(L/K) on'V factors through Gal(K'/K).

Proof. Let G be the image of Gal(L/K) under the representation p. By definition of a Galois
representation, Gal(L/K) is profinite and GL(V') is discrete, hence G is compact and discrete,
so it is finite. The kernel of the representation Ker(p) is a subgroup of Gal(L/K'), which
corresponds to a Galois subextension K’/K. Thus, Gal(K'/K) = Gal(L/K)/Gal(L/K') = G
is finite and so is the field extension K'/K. O

Lemma 3.2. The functor Rep induces an equivalence of categories between Chovvart

Rep(Galg).

and

Proof. The functor Rep defined above induces a functor Rep: Chovv({)‘fﬁrt — Rep(Galg), since

Chow@rt is the pseudo-abelian hull of the category Chowg generated by h(X) with X € SmProj
zero dimensional. Firstly, let us show that

HomChOWQ (b(X)a b(Y)) - HomRep(GalK) (Rep(X), Rep(Y))

is a bijection for all zero dimensional varieties X,Y. The injectivity follows from the injectivity
of the base change Corr% (X,Y) — Corr(;—{(XI-{, Yz).
For the surjectivity we note that any representation ¢ € Rep(Galg) is characterised by a
matrix A = (azy)eexyyey; With coefficients in Q, where ¢(b;) = azyby. Then we define
I = 2rex(R)yev () Qaylz x Y] € Cort®(X %, Y%). This cycle descends to Corr®(X,Y) since ¢
commutes with the action of Galg.
We prove now that the functor Rep is essentially surjective. Let ¢: Galg — GL(V) be a
Galois representation. By Lemma 3.1, ¢ is a Galois representation of a finite Galois extension
K'/K. Since we are working in characteristic zero, Maschke’s theorem allows us to assume that
¢ is irreducible, hence ¢ is a direct summand of the regular representation QGa(K'/K) [FHI1|.
As Galg-sets Gal(K’/K) and Spec(K")(K) = Homg (K’, K) are isomorphic?, thus the regu-
lar representation is Rep(h(Spec(K”’))). Since Rep is fully faithful, Chowart is pseudo-abelian

3Note that since K'/K is a Galois extension, for g € Galx we have g|xs € Gal(K’'/K), which allows as to
consider HomK(K'7 R’) as a Galgk-set in the natural form. Then the isomorphism is induced by the inclusion
K c K.



17

and ¢ is a summand of QG(E/K) hence it can be written as a kernel of a morphism with

QCal(K'/K)

domain , then ¢ lies in the essential image of Rep. ]

For a discrete group G, let Rep(G)Y be the ring of graded rational finite dimensional repre-
sentations of G such that the action of G factors through a finite group. The Galois group Galg
acts on the lines contained in Sg, hence it defines a homomorphism to the group of automor-
phisms of lines Galg — Aut(Z) ~ W, where W denotes the Weyl group of type Eg, see Remark
2.31. Denote the image of the above morphism by Wy, thus we have Rep(W()9 — Rep(Gal)¢
induced by the surjection. Additionally, we have a surjection Rep(W)9 —= Rep(Wj)J.

Theorem 3.3. The Grothendieck ring of zero dimensional motives Ko(ChOW(%) < Ko(Chowg)
is isomorphic to Rep(Galg )9, see Definition 5.12.

Proof. The equivalence of categories from Proposition 3.2 extends to an equivalence of categories
between Chow?Q and the category of graded Galois representations of Galg, which is semi-
simple. We have that Ko(ChOW(%) < Ko(Motpum) [MNP13], where Moty is the semi-simple
category of motives modulo numerical equivalence. Hence, Ko(Chowf)Q) and Rep(Galg)9 are

isomorphic. O

Remark 3.4. Representation theory of W over Q is the same as representation theory over C.
Given any irreducible C-representation ¢, the representation ¢®™¢  where myg is the Schur index
of ¢, is defined over Q since all the characters in Table 1 are rational, [CR66]. Additionally, for
representations of the Weyl group W it was proved in [Ben71| that the Schur index is 1.

Let us now apply 3.3 to obtain obstructions to the form of beautiful formulae for smooth
cubic surfaces S by means of representation theory. For this we first need to study the structure

of h(S).

Lemma 3.5. Let S be a smooth cubic surface. Then the motive of S is given by
h(S) ~1® (VeL)®L?

where V is the Artin motive corresponding to the Galois representation NS(S) ® Q under the
equivalence of categories proved in Lemma 3.2.

Proof. In [KMPO07| one has the following decomposition of the motive of a smooth projective

surface:
h(S) = 1@ ((Pic)rea(K) ®L) ® (NS(S) ® L) @ (T(S) ® L?) ® (Albg(K) ® L?) @ L?,

where Pic% denotes the Picard variety of S [Gro61], T(S) = Kern(Z2%(S)o— Albg(K)) the
Albanese-Jacobi kernel, Z2(S)g the abelian group generated by of 2-cycles of S being numeri-
cally trivial and Albg the Albanese variety of S.

From Lemma 4.1.1. in [Huy23] and Proposition 5.10 in [Kle05| follows that (Pic%)req(K)®L
vanish. Since the Albanese variety is the conjugate of the Picard variety [Gro61|, we also
have that Albg(K) ® LL? vanish. Additionally, we have T(S) = Z2(S)o = 0, since zero-cycles
a € Zg(S) = Z?(9) in smooth projective surfaces are numerically trivial if and only if they
are algebraically trivial [ACV17|, and any zero-cycle in S is algebraically trivial because S is
connected. g
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Remark 3.6. Note that we are using the same notation for elements in different rings, namely
L = [A'] € Ko(V) and L = (Spec(K),id, —1) € Ko(Chowg). However, under the Gillet-Soulé
motivic realisation we have [P!] € Ko(V) = h(P!) € Ko(Chowg). Thus, Example 5.11 implies
Le Ko(V) =1L € KQ(ChOWQ).

Theorem 3.7. Let S be a smooth cubic surface. Then the classes of the motives associated to
S F(S), Z(S) lie in the ring of graded representations Rep(Wq)?.

Proof. The geometric points of F'(S) and Z(S) correspond to lines and roots in NS(S) re-
spectively, cf. Remark 2.30 and Theorem 2.39, then h(F'(S)) and h(Z(S)) are Artin motives.
Finally, it was proved in [RN98| that h(Sym™ X) = Sym"™ h(X). Thus, by Lemma 3.5 follows
that h(S(™) is a direct sum of zero dimensional motives. Since the action of the Galois group
Galg on the associated Galois modules factors through Wy, we obtain the claimed result. [0

Corollary 3.8. Any formula in the Grothendieck ring of varieties for smooth cubic surfaces
with their Fano variety F(S) or their LLSvS variety Z(S) descends via the Gillet-Soulé mo-
tivic realisation to a formula in the ring Rep(Wq, C)9. Moreover, any formula in Rep(Wy, C)9
induces a formula in Rep(W,C)Y.

Proof. By Theorems 3.3 and 3.7, the images of S, F(S), Z(S) € Ko(V) under the Gillet-Soulé
motivic realisation lie in Rep(Wy)? ~ Rep(Wy, C)9, hence the image of a beautiful formula
along the Gillet—Soulé motivic realisation is a formula in Rep(Wy, C)9. Furthermore, we obtain
a formula in Rep(W, C)9 via the surjection Rep(W, C)9 —= Rep(Wy, C)9. O

Lemma 3.9 (|[Popl8|). Let V € Chowart be the Artin motive corresponding to the Galois
representation NS(S) ® Q under the equivalence of categories proved in Lemma 3.2. Then the
class of this Artin motive [V] € Rep(W,C)9 has the following decomposition in irreducible
representations of W, see Table 1.

[V]=1+Xxs.

Proof. By definition we have [V] = NS(S) ® C € Rep(W, C)9. The symmetric group Sg acts on
NS(S) by permutation of its generators E1i, ..., Fg, leaving the canonical class Kg = —3Ej +
Ei +...+ Eg invariant. Hence, S € W. By studying the characters of representations of Sg we
will determine the representation of V. The irreducible representations of W that could appear
in the decomposition of NS(S) ® C are of dimension < 7 because NS(S) ® C has dimension 7,
hence by Table 1 the possible irreducible representations are x1, X2, X3, X4-

Additionally, the canonical class Kg is invariant under the action of W, therefore [V] = 1 +
R, with R a 6-dimensional representation. In order to understand R, we consider R as a
representation of Sg and analyse how R acts on K Slv As proved in Lemma 8.2.6 in [Dol12], the
vectors By — Ey — Ey — E3 and E;_1 — E; for i € {2,...,6} form a basis of K§, which implies
that R can be decompose into two irreducible representations, one of them corresponding to
the vector space (Ey — E1 — Fy — E3) and the second one corresponding to the vector space
generated by E;_1 — E; for i € {2,...,6}. Thus, R can be decomposed into an irreducible
representation of dimension 1 and one of dimension 5, in particular R is not a sum of 1-

dimensional representations. Since, by Table 1, x1, x2 are 1-dimensional representations and R
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can not be decomposed into 1-dimensional irreducible representations, they don’t appear in [V].
The representation R is permutational in {E1,..., Eg}. The trace of an element g € Sg equals
the elements that are left invariant, hence a transposition has trace 4. Since transpositions lie
in a conjugacy class of W and the character is invariant under conjugation, we need to find a
conjugacy class of y3 or y4 with character 4. By Table 1, only x3 has an irreducible class with
character 4, hence R = xs. O

Lemma 3.10. For any smooth cubic surface S, the following classes of zero dimensional motives
have the decomposition in irreducible representations of the Weyl group W presented below, see
Table 1.
(i) [S] =1+ (1+x3)L+L?
( ] =1+ (24 2x3)L + (4 + 2x3 + X9 + x10)L* + (2 + 2x3)L% + LY,
(iif) [S®] =14 (1+ x3)L + 3+ x3 + x10)L? + (1 + x3)L® + L4,
(iv) [F(S)] = 1+ x3 + x10-
Proof.
(i) Follows from Lemma 3.5 and Lemma 3.9.
(ii) Follows from the decomposition of [S] and x3 = 1 + X9 + X10, Which can be verified by
comparing characters, see Table 1.
(iii) For a representation V', we define the n-th symmetric product of the representation as
Sym™ V. Given a direct product of vector spaces A @ B, it holds Sym?(A@® B) = Sym?(A) ®
A® B ® Sym?(B). Hence, from the representation of [S] follows:

(3.1) Sym*([S]) = 1+ (1 + x3)L + (2 + x3 + Sym® x3)L? + (1 + x3)L® + L*.

Additionally, for the character of x(g) = Xsym2, (9) holds x(g) = 3 (xx(9)2+xk(g%)), [FHI1]. In
Table 1 can be found in the third, fourth and fifth lines the second, third and fifth powers of the
conjugacy classes respectively. Explicit calculations using (3.1) show that Sym? x5 = 1 + x10,
which implies the claimed result.

(iv) Follows from the decomposition of the class of the symmetric power [S®)] and the X-
F(X) relation, see Example 2.17. O

Corollary 3.11. There is no homogeneous beautiful formula of degree 2 for smooth cubic sur-
faces S.

Proof. By Corollary 3.8, a homogeneous formula of degree 2 implies a formula in Rep(W, C)¢
relating the classes. [S],[S?],[S®]. However, by Lemma 3.10, the representation of [S] does
not have summands yg9 and x19 but the other two classes have the term xi1¢ in their decom-
position, which leaves us with the only possibility [S?] — [S(®)] = [S]. This formula does not
hold, since in the left hand side we have the term yolL?, which does not appear on the right
hand side. Since there is no such formula for generic smooth cubic surfaces, we have shown the

statement. O
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Corollary 3.12 ([Popl8|). The X-F(X) relation is the unique beautiful formula of degree 2
for smooth cubic surfaces S with the Fano variety F(S).

Proof. Firstly, by Theorem 2.14 the X-F(X) is a beautiful formula. Additionally, any beautiful
formula involving [F(S)] have as coefficient of [F(S)] a polynomial in L divisible by L2, since
X10 is the coefficient of L2 in the decomposition of [S?] and [S].

Assume there is another beautiful formula of degree 2 involving [F(S)]. Let p(L)L? be the
coefficient of [F'(S)]. Hence, by multiplying the S — F(S) relation by p(L) and subtracting,
we obtain an homogeneous beautiful formula of degree 2, which is not possible by Corollary
3.11. g

As proved in 2.39, for smooth cubic surfaces we have that the geometric points of Z(S5)
correspond to the set of roots R < NS(S), cf. Remark 2.31. Using this description of Z(S) and
SageMath, Popov in [Pop18| obtained explicit representatives for each conjugacy class of W in
terms of simple reflections and calculated traces explicitly to determine following decomposition

in irreducible representations for the class of Z(S5).

Lemma 3.13 ([Popl8|). The 72-dimensional representation [Z(S)] € Rep(W,C)9 has the fol-
lowing decomposition in irreducible representations, see Table 1.

[Z(S)] =14 x3+ x8 + x10 + X16-

Lemma 3.14. For any smooth cubic surface S, the following classes of zero dimensional motives
have the decomposition in irreducible representations of the Weyl group W presented below, see
Table 1.

(i) [S®] =1+ (1+ xs)L+ (3+ x3 + x10)L2 + (3+ 3x3 + 2x10 + X16)L® + (3 + X3 + X10)L* +
(1+ x3)L° + LS,

(i) [$ x S@] =1+ (2+ 2x3)L + (6 + 3x3 + X0 + 2x10)L.* + (6 + 7x3 + X0 + 3x10 + X16 +
x20)L3 + (6 4+ 3x3 + xo + 2x10)L* + 2(1 + x3)L® + LS,

(iii) [S®] = 1+ (3 4+ 3x3)L + (9 + 6x3 + 3x0 + 3x10)L? + (10 + 12x3 + 3x9 + 4x10 + X12 +
x16 + 2x20) L3 + (9 + 6x3 + 3x9 + 3x10)L* + (1 + x3)L° + LS.

Proof. Follows as in Lemma 3.10. U

Corollary 3.15. There is no beautiful formula of degree 3 for smooth cubic surfaces S with the
Fano variety of lines F(S), or the LLSvS variety Z(S).

Proof. Any beautiful formula for S implies a formula in Rep(W,C)? by Corollary 3.8. The
unique class of degree < 3 having the irreducible summand x2 is [S®] and the unique class
having the summand yg is [Z(S)], hence they cannot appear in a formula of degree 3. By
excluding these classes, the unique class having the summand a0 is [S x S®], hence it cannot
appear in the formula. Now, the only possible class of degree 3 that can appear is [S(S)],
however it has the irreducible summand x16, which does not appear in any class of degree < 2
or F'(S). Hence, there is no formula of degree 3 involving Z(S) or F(S). Since there is no such
formula for a generic smooth cubic surface, the statement follows. O
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Lemma 3.16. For any smooth cubic surface S, the following classes of zero dimensional motives
have the decomposition in irreducible representations of the Weyl group W presented below, see
Table 1.

(1) [SW] =1+ (1 + x3)L + (3 + x3 + x10)L? + (3 + 3x3 + 2x10 + X16)L + (6 + 4x3 + x5 +
5x10 + x16 + x20)L* + (3 + 3x3 + 2x10 + x16)L° + (3 + x3 + x10)LE + (1 4+ x3)L7 + L&,

(i) [S x S®] =1+ (2+ 2xs)L + (6 + 3x3 + X0 + 2x10)L? + (8 + 9x3 + X0 + 5x10 + 2x16 +
x20)L2 + (12 + 10x3 + X8 + 3x9 + 10x10 + 3X16 + 3X20 + X23)L* + (8 + 9x3 + X0 + 5X10 + 2X16 +
x20)L° + (6 4+ 3x3 + X9 + 2x10)LS 4 (2 + 2x3)L7 + L8,

(iii) [S*] = 1+ (4x3 + 4)L + (12x3 + 6x9 + 6x10 + 16)L% + (36x3 + 12x9 + 16x10 + 4X12 +
Ax16 + 8x20 + 28)L3 + (41x3 + x7 + X8 + 24x9 + 29x10 + 4x12 + 2X13 + TX16 + 2X17 + 12X20 +
3x23 + 3x25 + 40)L4 + (363 + 12x9 + 1610 + 4Xx12 + 4X16 + 8X20 + 28)1[45 + (123 + 6x9 + 6x10 +
16)L8 + (4xs + 4)L7 + L8,

(iv) [S? x ST =1+ (2x3 + 2)L + (4x3 + X0 + 3x10 + 8)L2 + (12x3 + 2X9 + 6x10 + 2x16 +
2x20 + 10)L3 + (13x3 + xs + 4x0 + 13x10 + X13 + 3X16 + X17 + 4X20 + X23 + 17)L* + (12x3 +
2X9 + 6X10 + 2X16 + 2x20 + 10)L5 + (4x3 + X9 + 3x10 + 8)LE + (2x3 + 2)L7 + L8,

(v) [S2x SP] = 14 (3x3+3)L+ (Tx3+3x0+4x20+ 11) L2+ (21 x5+ 5x0 + 10x10 + X12+3X 16 +
4x20 + 17)]143 +(23x3+xs8+ 11x9 +19x10 + Xx12 + X13 + 5X16 + X17 + TX20 + 2X23) + X25 + 25)IL4 +
(21x3 +5x9 + 10x10 + X12 + 3X16 + 4x20 + 17)L5 + (73 + 3x9 + 4x10 + 11)L16 + (35 + 3)L7 + L8,

Proof. Follows as in Lemma 3.10. U

Corollary 3.17. There is no homogeneous beautiful formula of degree 4 for smooth cubic sur-

faces S.

Proof. Similar as in Corollaries 3.11, 3.12 and 3.15 we can show that there is no homogeneous
formula of degree 4 by comparing coefficients in the representations of the classes listed in
Lemma 3.16. O

Corollary 3.18 ([Popl8|). The only possible form up to multiplication of a beautiful formula
of degree 4 for smooth cubic surfaces S with their LLSvS variety Z(S), is the following relation.

LYZ(9)] = [SW] — (1 =L+ L>)[S®] = L[S][SP] + (L + L2 + L3)[S?] — 2L2[S?)]

(3:2) — (L—L2+L%—L*+L5%[S] + (L2 + L* + ).

Proof. A beautiful formula of degree 4 induces a formula in Rep(W,C)? by Corollary 3.8. By
comparing the irreducible decomposition of the classes involved, we conclude that the formula
(3.2) holds in Rep(W, C)J.

Note that yg appears in classes of symmetric powers of S only as coefficient of L*. Hence, in
any beautiful formula with [Z(S)], the coefficient of [Z(S)] is a polynomial in L divisible by
L*. Assume that there is a beautiful formula of degree 4 with [Z(S)] different to (3.2). Say
that the coefficient of [Z(S)] in such formula is p(IL)L* with p(LL) € C[L], thus by multiplying
(3.2) with p(LL) and subtracting the two formulae we obtain an homogeneous formula of degree
4, contradicting Corollary 3.17. O
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4. OBSTRUCTIONS FROM STABLE BIRATIONAL GEOMETRY VIA THE STABLE BIRATIONAL
REALISATION

Our goal in this section is to find obstructions by means of the stable birational realisation to
the possible forms that a beautiful formula for smooth cubic surfaces S with their LLSvS vari-
ety Z(S) can have. We have proved via the Gillet—Soulé motivic realisation, following [Pop1§|,
that the only possible homogeneous beautiful formula for smooth cubic surfaces S of degree 4 is
(3.2), which holds in the Grothendieck ring of Chow motives Ko(Chowg). However, as we will
prove in Corollary 4.6, following [Pop18|, this formula is not a beautiful formula, which implies
that there is no beautiful formula of degree 4 for smooth cubic surfaces with their LLSvS variety.

Let K be an algebraically closed field of characteristic zero. Any smooth cubic surface over
K is isomorphic to a blow-up of IP’%( in 6 distinct points by Lemma 2.28, thus [S] = 1+ 7L 4 L2
Additionally, by Theorem 2.39 we can write the class [Z(S)] as a polynomial in L.. Thus, there
are various formulae relating these two classes. The structure of smooth cubic surfaces over
non-algebraically closed fields is more interesting, therefore we will explore this direction.

Lemma 4.1 (Lang—Nishimura Lemma, [Lan54], [Nis55|). Ler f: X —Y be a rational map of
K-schemes with Y proper. If X has a smooth K-point, then Y has a K-point.

Proof. After blowing-up X, we obtain a morphism X — Y, where X — X is a finite sequence
of blow-ups with smooth centres, [Hir64]|. The fibre over the smooth point is rational, hence X
has a K-point, which is mapped to a K-point in Y. O

Lemma 4.2. Let S be a smooth cubic surface over K, then SBI(K) # .

Proof. Consider a K-line not contained in S. Then, the intersection with S is defined over K
and is a subscheme of length 3, [Har77]. This defines a a K-point in S (3] see Appendix 5.5. O

Lemma 4.3. Let S be a smooth cubic surface over K and let n € N be prime to 3. If S™ (K) #
5, then there exists a field extension L/K of degree prime to 3 such that S(L) # .

Proof. Given a K-point S, we can find a K-point in S[™ since the fibres of the Hilbert-Chow
morphism are rational, see Appendix 5.5. A K-point of S is a closed subscheme of dimension
zero Z < S and length n supported at finitely many points y1, ..., yq with d < n.

Thus, length(Ozy,) = [k(y;): K]multy,(Z,,) and n = length(Z) = X}, 4length(Oz,,),
[EHO0]. Assume [k(y;): K] is divisible by 3 for all 1 < i < d, then n is not prime to 3, which
contradicts the hypothesis. In consequence, there exists a y; such that [k(y;) : K] is prime to
3. Consider y; € Z < S as an (L = k(y;))-point. O

Lemma 4.4. Let n € N prime to 3. There exists a smooth cubic surface S over K = Q (or
K = Qy) such that S5 s not stably birationally equivalent to S®).

Proof. In [CM04] it was proved that there exists a smooth cubic surface S over K = Q (or
K = Q) with no L-points for any field extension L/Q (or L/Q)) of degree prime to 3.
Assume that S and S®) are stably birationally equivalent, thus there exist n,m € Zq and a
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rational map S x P —= §G) x P* ——5 §(") x P where the first morphism is induced by the
Hibert-Chow morphism. By Lemma 4.2, we have SPl(K) # &, which implies S (K) # & via
Lemma 4.1. From Lemma 4.3 follows that there exists a field extension L/K of degree prime
to 3 with S(L) # &, which contradicts the result proved in [CMO04]. O

Theorem 4.5 ([Popl8|). There is no beautiful formula in Ko(Vg) (or Ko(Vg,)) for smooth

cubic surfaces S of the form:

(4.1) [S®)] = Z[S(”i) X oo X S(”Zi)] (mod L),

)

if for every i there is an n; prime to 3.

Proof. If (4.1) is a beautiful formula, then by Corollary 2.24 S®) is stably birationally equivalent

to S1) x ... x § (k) for some ¢, which contradicts Lemma 4.4. O

Corollary 4.6. The formula (3.2) for smooth cubic surfaces S is not a beautiful formula in
Ko(V) for K = Q (or K = Qp). In particular, it is not a beautiful formula.

Proof. Assume that the formula (3.2) is a beautiful formula. Then, we have [S®)] = [S®)]
(mod L), which is a contradiction to Theorem 4.5. O

Remark 4.7. Note that Theorem 4.5 holds for all fields K of characteristic zero such that
there exists a smooth cubic surface S without L-points for every field extension L/K of degree
n prime to 3. In this sense, Corollary 4.6 could be extended. In particular, Corollary 4.6 holds
for any field extension K/Q (or K/Q,) of degree prime to 3.

5. APPENDIX

5.1. Fano variety of lines.

Definition 5.1 (Fano variety of lines). Let X < P, subvariety and let 0 < m < n + 1. Define
the Fano functor of planes:

F(X,m): (Sch/K)°—(Sets)
via
F(X,m)(T) ={LcT x X :Lis T-flat and Ly < P} is a m-dimensional linear subspace}.
By T-flat we mean that L =T x X —T is a flat morphism and the fibres are considered with

respect to this morphism. We would be interested in the case m = 1, for which we obtain the
Fano functor of lines denoted by F(X) = F(X,1).

Example 5.2. Some familiar cases of Fano functors are the following.

(i) F(P,m) = G(m,P) corresponds to the Grassmann functor. The Grassmann functor is
defined as G(m, X),

(ii) F(X,0) = hx = Homg(—, X) corresponds to the functor of points.

We want to give a geometric interpretation to this functor via the representation of functors.
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Definition 5.3 (Representable functor). A functor F': C°PP — (Sets) is called representable if
there exists an object X € C and an isomorphism 7: hxy —F. The tuple (n, X) is uniquely

determined up to unique isomorphism.

Remark 5.4. For our particular case we want to identify the Fano functor of planes with
a variety, which we will call a Fano variety of m-planes. The idea behind this is to use the
representability of the Grassmannian functor, which comes from the Pliicker embedding, and
the fact that F'(X,m) < G(m,P) is a closed subfunctor, [Huy23]|.

Lemma 5.5 (Proposition 2.1.19, [Huy23|). The Fano variety of lines F(X) of a smooth cubic
hypersurface X < ]P’T;(H, where n = 2, is a smooth projective variety of dimension 2n — 4.

5.2. Grothendieck ring of Chow motives. This subsection is mostly based on [Sch94| and
[MNP13]. Let X € SmProj be a smooth projective variety. Define the cycle group, Z¢(X),
to be the free abelian group generated by irreducible subvarieties of X of codimension d > 0.
We will now consider adequate relations on this group, see [MNP13] for a formal definition of
adequate relations.

Let W < X x P! be a closed irreducible subvariety of dimension d + 1 and let a,b be dis-
tinct points of P! such that X x a, X x b and W intersect properly, namely dim(W n X x a) < d
and dim(W n X x b) < d. The fibre W, of the morphism W —=P! is the scheme theoretic
intersection W n X X a. Identify X x a as X, then we can think of the fibre W, as a cycle of
X of dimension < d. Based on this discussion, we can define the rational equivalence relation:
Two cycles Z1, Zo X are said to be rational equivalent if there exists a cycle W < X x P! and
a,be P! as described above such that W, = Z; and W}, = Z5. Extend this equivalence relation
in the natural way over the cycle group.

The intuition behind being rationally equivalent is that one can go from one cycle to the
other one through a rational family of cycles, i.e. a family of cycles parameterised by P'. This
definition can be weakened by allowing families of cycles parameterised by smooth projective
connected curves. This description gives rise to the so called algebraic equivalence. Two cycles
71,79 < X are said to be algebraically equivalent if there exists a connected curve C' € SmProj
and a cycle W < X x C with W, = Z; and W}, = Z5 for two points a,b € C. It follows from
the definition that two cycles being rationally equivalent are algebraically equivalent.

Consider the rational equivalence relation ~ and define the codimension d Chow group as
CHY(X) = Z%X) ® Q/ ~. Given two smooth projective varieties X,Y € SmProj such
that X is of pure dimension d we define the group of correspondences of degree r to be
Cort"(X,Y) = CH"(X x Y). More generally, for X = | |, X; with X; connected compo-
nents of X, we define Corr" (X,Y) := @; Cort" (X; x Y).
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We want to relate the cycle groups of two different varieties X, Y € SmProj related by a proper
morphism f: X —Y with the objective of defining the composition of correspondences. Firstly,
we define the pullback and pushforward of algebraic cycles. Given an irreducible subvariety
W < X we define the pushforward by extending linearly following definition:

EW) - E(J(W)IF (W) i dim(f (W) = dim(W)
0 , else

frW) =

In order to define the pullback, we need the notion of intersection of two smooth subvarieties
V,W < X of codimension n and m, which intersect in a union of subvarieties of codimension
< n + m. If all the intersections have codimension n + m, we say that they intersect properly.
If V, W intersect properly, we define the intersection product, [Har77]:

VW=V W 2)Z,
Z

where Z runs over the irreducible components of V. W and i(V - W; Z) is the intersection
number defined using the Serre’s Tor formula as:

i(V-W;Z) = Y (=1)"1aTor (A/I(V), A/T(W)),

T

for A = Ox z and I(V) the ideal of V in A.

We define the pullback of a subvariety T' < Y such that I'y intersects properly X x T as:

JHT) = (prx)«(Typ - (X x T)).
The correspondences are a generalisations of morphisms of varieties in the following sense:
Given a morphism of varieties f: X —Y, the Graph I'y € Corr(X,Y) := @, Corr"(X,Y). In
consequence, we should have an analogous to composition of morphisms. Let X,Y, Z € SmProj,
define
Corr” (X,Y) ® Corr®(Y, Z) — Cort" *(X, Z)
by
f®g—=go [ =pxz«0xv ] Py2z9),
where pxy,pxz,Pyz are the projections from X x Y x Z to X xY, X x Z and Y x Z,
respectively.

Definition 5.6 (Category of Chow motives). The category of Chow motives, Chowg, is de-
fined as follows: The objects are triples (X, p,n), where X € SmProj is a variety, p = p? €
Corr®(X, X) is an idempotent and n is an integer. If (X, p,n), (Y, ¢, m) are Chow motives, then

Homcnow, (X, p, n), (Y, g, m)) == q Corr™ " (X, Y)p,
where composition is defined as described above. We call p and g projectors.

Definition 5.7 (Category of Artin motives). Let Chow@rt be the pseudo-abelian subcategory
of Chowg generated by the motives h(X) = (X,id,0) associated to zero dimensional smooth
projective varieties X € V.
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Definition 5.8 (Tensor product of motives). We define the tensor product of motives via:
(X;p,n) @ (Y,q,m) = (X x Y.pxq,n+m).

Definition 5.9 (Direct sum of motives). The category Chowg is an additive category. If
(X,p,n),(Y,q,m) are Chow motives with n = m the direct sum is defined as

(X,p,n) @ (Y,q,m) = (XuY,pug,n).

Example 5.10. Let X € SmProj of dimension d and e € X (K) a K-point. The cycles pg = ex X
and pog = X X e define orthogonal projectors, i.e. pg 0 pog = 0 and pog o pg = 0. This implies
H(X) = B2(X) @ b* (X) @2 (X), where b*(X) = (X, p,,0) with p; — id — po — paa. It can be
shown that h%(X) = (Spec(K),id,0), [MNP13].

Example 5.11. We denote 1 = h(Spec(K)) = (Spec(K),id,0), cf. Definition 2.25. By com-
putation of the diagonal Ap: can be shown p, (P') = 0, which implies h(P') = 1 ® L, where
L := h2(P!) = (P!, P! x ¢,0) is called the Lefschetz motive, [MNP13]. It can also be proved that
L = (Spec(K),id, —1).

Definition 5.12 (Grothendieck ring of Chow motives). Let A be a a Q-linear tensor category.
Denote by K¢(.A) the free abelian group of isomorphism classes [X] of objects of A modulo the
relations [X @ Y] = [X] + [Y]. The tensor product of A induces a commutative ring structure
on Ko(A). The Grothendieck ring associated to the category of Chow motives Chowg is called
the Grothendieck ring of Chow motives and is denoted by Ko(Chowg).

5.3. Tools from birational geometry. Let X be a surface, P € X(K) be a K-point and
7: X := Blp(X)—= X be the blow up of X at the point P.

Lemma 5.13. The canonical divisor ofX is given by K¢ = m*Kx + E.

Definition 5.14 (Intersection). Let Z < X be a proper over K closed subscheme of dimension
d < n. The intersection of L1, ..., L, € Pic(X) with Z is defined as

(L1...L9.7) = > (—1)™x(Z, L}, ®@...® L] |2).

i1yeeimc{1,...,n}

If Z =X we write (£1...Ly).

Definition 5.15 (Intersection form). Let X be a smooth projective surface, then for two curves

C,D c X we define the intersection form as
C.D = (0x(C).0x(D)) = x(Ox) = x(Ox(=C)) = x(Ox(=D)) + x(Ox(~=C — D)).
Note that this makes sense since Weil divisors are effective Cartier by smoothness.

Lemma 5.16. Let X be a smooth projective surface. Then the map Z— Pic(X) defined by
1+—Ox(FE), where E is the exceptional divisor of the blow up 7: X —= X, and the natural map
7*: Pic(X)—= Pic(X) determine an isomorphism Pic(X) ~ Pic(X) @ Z. The intersection
form on Blp(X) is determined by:

(i) If C, D € Pic(X), then m*C.n*D = C.D.

(i) If C € Pic(X), then n*C.E = 0, where E is the exceptional line.

(iii) E.E = —1 in Pic(X).
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Theorem 5.17 (Castelnuovo’s contraction theorem, |[Har77|). Let X be a smooth surface,
C < X a curve with C ~ P! and C?> = —1. Then there exists a smooth surface Y, a point y € Y
and an isomorphism X ~ Bl,(Y') identifying C with the exceptional divisor.

Corollary 5.18. Let X be a smooth surface. Then X is minimal if and only if X contains no
(—1)-curves. O

Theorem 5.19 (Classification of minimal smooth surfaces, [Har77|). Let X be a minimal
smooth surface. Then X satisfies exactly one of the following conditions.

(i) X has Kodaira dimension x(X) = —oo. Hence X ~ P? or X is a P!-bundle over a curve.

(i) X has Kodaira dimension x(X) = 0. Hence X is an Abelian, K3, Enriques or a
(quasi)bielliptic surface.

(iii) X has Kodaira dimension (X ) = 1. Hence X admits a fibration over a curve f: X —C
such that all the fibres are smooth elliptic curves.

(iv) X has Kodaira dimension x(X) = 2. Hence X is of general type.

Theorem 5.20 (Weak factorisation theorem, [Abr+00]). Let ¢ : X1 --» Xo be a birational
map between complete smooth connected varieties, let U < X1 be an open set where ¢ is an
isomorphism. Then ¢ can be factored into a sequence of blow-ups and blow-downs with smooth

centres disjoint from U. There exists a sequence of birational maps

i ¢i @i P
X1=W 2 Vi 2 Vi 75 Vir — 5 L Vi 2 Vi = Xo,
where ¢ = ¢y 0 ¢j_1 0 -+ Py 0 P1, such that each factor ¢; is an isomorphism over U, and
oi Vi -=» Vigq or qb;l : Vier --+ V; is a morphism obtained by blowing up a smooth centre

disjoint from U.

5.4. Resolutions of rational double point singularities. The following study of rational
double point singularities in surfaces is mostly based on [Dol12]. Throughout this section let X
be a normal projective surface and m: X — X be a minimal resolution of singularities.

Definition 5.21 (Resolution of singularity). A resolution of X is a birational, proper and
surjective morphism 7 : X — X, where X is a non-singular projective variety. A resolution is

called minimal if it does not factor non-trivially through another resolution of singularities.

Remark 5.22. It was proved in [Hir64| that resolutions always exist for varieties over fields of

characteristic zero.
Lemma 5.23. For any resolution m : X — X we have 105 = Ox.

Proof. Without loss of generality we restrict to the affine case X = Spec(A). Since 7 is proper,
74O ¢ is coherent. Hence B = I'(m.O ¢, X) is a finitely generated A-module. By birationallity
of m, A and B have the same quotient field. Additionally, X is normal, hence A is integrally
closed, which implies B = A. O

Definition 5.24 (Rational singularity). A singularity of X is rational, if for the resolution
7m: X —= X we have le*(’);( =0.
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Remark 5.25. The definition of a rational singularity is independent of the chosen resolution.
To prove this consider the functor my : Sh(X)—= Sh(X), which sends injective objects to I'-
acyclic objects. Hence there exists a spectral sequence

EY? = (RPTRIT,)(F) = HP (X, R (F)) = RPT(T o) (F) = HPY(X F),
which is natural in F'. It can be verified that this sequence stabilises on the third page, hence
H*(X,04) = EX’ = B5° = E;°/EY' = H*(X,0x)/H (X, R'7,0%).

This implies po(X)—pa(X) = h%(X, R'7,Ox) and the arithmetic genus is a birational invariant
for varieties over fields of characteristic zero, [Har77].

Lemma 5.26 (|Dol12|). The following statements are equivalent:
(i) z is a rational singularity,
(ii) for every curve C supported in 7= (x), one has H'(C,O¢) = 0,
(iii) for every curve C supported in 7~ 1(z) we have p,(C) =1+ 1C.(C + Ky) < 0.

For # € X, the exceptional curve E = 7~ !(x) is compact and one dimensional, since X is
proper and the resolution is a birational morphism. Additionally, it is connected by Zariski’s
connectedness theorem. Hence, E is the union of finitely many irreducible curves, say {E;}i<n.
Let Z, = >, n;E; be a positive cycle minimal (in terms of order on the set of effective divisors)
with the property Z.FE; < 0 for all E; supported in 7~ !(x), we call such a cycle a fundamental

cycle.

Lemma 5.27. The components E; of the exceptional curve are isomorphic to P! and are roots
in the lattice associated to X, i.e. E;. K =0 and EZ2 = —2.

Proof. From Lemma 5.26 we conclude p,(E;) = 0 for all i, hence E; ~ P!. From corollary
5.18 we have Ef < —2 because the resolution is minimal. By the adjunction formula, Ef +
E; K = —2 implies E;.Ky > 0. Let Z be a fundamental cycle, then Lemma 5.26 implies
0=2+2%2< —Z4K; = - n;E;. K. This implies F;. K = 0 for every Ej;, hence the
adjunction formula yields Ef = —2. O

5.5. Symmetric product. This section is based on [Musl1]. Let X be a scheme of finite type
over K, and let G be a finite group acting from the right on X by automorphism over K. We
denote by o4 the automorphism corresponding to g € G.

Definition 5.28 (Geometric quotient). A geometric quotient of X by G is a pair (X/G,7)
consisting of a K-scheme X /G and a morphism of K-schemes 7 with the following properties:

(i) The morphism 7 is G-invariant, i.e. To o, = 7 for all g € G,

(ii) The morphism 7 is surjective and the fibres of ¢ over closed points of X /G are exactly
the orbits of the closed points of X,

(iii) The scheme X /G carries the quotient topology induced by ,

(iv) The structure sheaf Ox /g = ﬂ*(Og) < m+Ox consists of G-invariant sections.
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In the affine case X = Spec(A), it can verified that 7: Spec(A)—= Spec(AY) induced by
the inclusion A® — A is a geometric quotient, where A denote the G-invariant elements in
A, see [Musll]. In the case of X not being affine, we construct the geometric quotient locally.
In order to do it, we require the existence of an affine open cover {U,};cr of X such that U; is
G-invariant for every ¢ € I. The existence of such cover can be verified in the case of X being

quasi-projective. For a detailed construction see [Nun21|.

Theorem 5.29 (|[Musll]|). Let X be a quasi-projective scheme and G a finite group acting on
X. Then the geometric quotient X — X /G exists.

Lemma 5.30 (|[Nun2l|). Under the conditions of Theorem 5.29, we have that X /G is separated
and of finite type. Moreover, the properties "reduced” and "projective” descend through the
morphism . In particular, if X is a projective variety, so is X/G.

Given a smooth surface S, we define the n-fold symmetric power of S to be the geometric
quotient S := S"/S, where S, is the n-th symmetric group. Additionally, we define the
Hilbert scheme of n points of S to be S = H™(S), see Definition 2.32. Note that a closed
subscheme Z < S having constant Hilbert polynomial n is zero dimensional and supported at
finitely many closed points. Even more, dimyxg H°(Z,0z) = n = > dimg (Oz 2, ), where z; runs
over the points where Z is supported and we call dimx H%(Z, Oz) the length of Z.

Corollary 5.31. The symmetric product of a smooth cubic surface S is a variety. O

Theorem 5.32 ([Fog68|). Let S be a smooth projective surface. Then the Hilbert scheme S

is an irreducible smooth variety of dimension 2n and there is a K-scheme morphism

x5l g(n)
[Z]— Z dimg (Oz4)[x],

zeS

called the Hilbert—Chow morphism. Moreover, the Hilbert—Chow morphism is a resolution of

singularities.
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TABLE 1. Character table for the Weyl group of type Eg
Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Order 1 2 2 2 2 3 3 3 4 4 4 4 5 6 6 6 6 6 6 6 8 9 10 12 12
p=2 1 1 1 1 1 6 7 8 3 4 4 4 13 6 7 7 8 8 7 8 9 22 13 19 14
p=3 1 2 3 4 5 1 1 1 9 10 11 12 13 3 3 2 3 2 4 5 21 6 23 10 9
p=>5 1 2 3 4 5 6 7 8 9 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 25
X1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X2 1 -1 1 1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 1
X3 6 4 -2 2 0 -3 3 0 2 -2 2 0 1 1 1 1 -2 -2 -1 0 0 0 -1 1 -1
X4 6 -4 -2 2 0 -3 3 0 2 2 -2 0 1 1 1 -1 -2 2 -1 0 0 0 1 -1 -1
X5 10 0 -6 2 0 1 -2 4 2 0 0 -2 0 -3 0 0 0 0 2 0 0 1 0 0 -1
X6 15 -5 7 3 -1 3 o0 3 -1 -3 1 1 o0 1 -2 -2 1 1 0 -1 1 o0 0 o0 -1
X7 15 -5 -1 -1 3 6 3 0 3 -1 -1 -1 0 2 -1 1 2 -2 -1 0 1 0 0 -1 0
X8 15 5 7 3 1 -3 0 3 -1 3 -1 1 0 1 -2 2 1 -1 0 1 -1 0 0 0 -1
X9 15 5 -1 -1 -3 6 3 0 3 1 1 -1 0 2 -1 -1 2 2 -1 0 -1 0 0 1 0
X10 20 10 4 4 2 2 5 -1 0 2 2 0 0 -2 1 1 1 1 1 -1 0 -1 0 -1 0
X11 20 -10 4 4 -2 2 5 -1 0 -2 -2 0 0 -2 1 -1 1 -1 1 1 0 -1 0 1 0
X12 20 0 4 -4 0 -7 2 2 4 0 0 0 0 1 -2 0 -2 0 2 0 0 -1 0 0 1
xi13 | 24 4 8 o 4 6 o0 3 0O 0 O O -1 2 2 =2 1 1 0 1 0 0 -1 0 0
X14 24 -4 8 0 -4 6 0 3 0 0 0 0 -1 2 2 2 -1 -1 0 -1 0 0 1 0 0
X15 30 ~-10 -10 2 2 3 3 3 -2 4 0 0 0 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 1
X16 30 10 -10 2 -2 3 3 3 -2 -4 0 0 0 -1 -1 1 -1 1 -1 1 0 0 0 -1 1
X17 60 10 -4 4 2 6 -3 -3 0 -2 -2 0 0 2 -1 1 -1 1 1 -1 0 0 0 1 0
Xxis |60 -10 -4 4 -2 6 -3 -3 0 2 2 0 0 2 -1 -1 -1 -1 1 1 0 0 0 -1 o0
X19 60 0 12 4 0 -3 -6 0 4 0 0 0 0 -3 0 0 0 0 -2 0 0 0 0 0 1
X20 64 16 0 0 0 -8 4 -2 0 0 0 0 -1 0 0 -2 0 -2 0 0 0 1 1 0 0
X21 64 -16 0 0 0 -8 4 -2 0 0 0 0 -1 0 0 2 0 2 0 0 0 1 -1 0 0
X22 80 0 -16 0 0 -10 -4 2 0 0 0 0 0 2 2 0 2 0 0 0 0 -1 0 0 0
X23 81 9 9 -3 -3 0 0 0 -3 3 -1 -1 1 0 0 0 0 0 0 0 1 0 -1 0 0
X24 81 -9 9 -3 3 0 0 0 -3 -3 1 -1 1 0 0 0 0 0 0 0 -1 0 1 0 0
X25 90 0 -6 -6 0 9 0 0 2 0 0 2 0 -3 0 0 0 0 0 0 0 0 0 0 -1
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